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Do investors demand higher returns from less liquid securities? This is an intriguing 

question in financial economics and has attracted much attention.  In their seminal work, Amihud 

and Mendelson (1986) show that asset returns are positively related to the quoted bid-ask spread.  

Using an alternative measure based on price moves per unit volume, Amihud (2002) confirms 

that liquidity measures are indeed positively related to average realized returns.1  These findings 

suggest that the answer to the posed question is in the affirmative.  Pointing to the centrality of 

this result in finance research, the papers of Amihud and Mendelson (1986) and Amihud (2002) 

have garnered more than 15,000 citations on Google Scholar to date. 

The method used for estimating the cross-sectional liquidity-return relation in the 

literature has generally been to regress monthly realized returns on an illiquidity measure lagged 

by one or two months.  The argument is that illiquidity raises the required return, which 

manifests itself in monthly average returns.  Extending this argument, Amihud and Mendelson 

(2008) propose that since required returns are proxies for costs of capital, corporations should be 

concerned about illiquidity having a potentially deleterious effect on such costs.2 

The average monthly returns used to measure the illiquidity-return relation are not 

directly related to the cost of capital (or required return) for the typical firm’s projects.3  Most 

corporations are concerned more about capital costs for projects that take years to pay off.  As 

such, the issue of whether illiquidity affects corporations’ required returns should involve a 

measurement of the relation between illiquidity and a measure of the internal rate of return on 

firms’ longer-term cash flows.  Happily, such cost of capital measures are readily available in the 

                                                            
1 See also Datar, Naik, and Radcliffe (1998).  Pástor and Stambaugh (2003), Acharya and Pedersen (2005), Kamara, 
Lou, and Sadka (2008), Korajczyk and Sadka (2008), and Lou and Sadka (2011) extend the liquidity pricing context 
to systematic liquidity and liquidity risk pricing.  Ben-Rephael, Kadan, and Wohl (2015) analyze the trend in the 
liquidity premium and show that it has diminished over the years. 
2 Amihud and Levi (2019) use this idea to investigate the link between illiquidity and real investment. 
3 See Fama and French (1997) who find that the cost of capital estimates based on average realized returns are 
“unavoidably imprecise.”  Elton (1999) makes a similar point in his AFA presidential address. 
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existing literature.  These measures combine analysts’ forecasts and financial statements to back 

out a long-term discount rate on firm’s equity, and this rate, in excess of a benchmark Treasury 

bond yield, is the implied equity cost of capital (ICC).  The goal of our analysis is to explore the 

relation between equity illiquidity and ICC estimates for U.S. data. 

First, when we perform a portfolio-based analysis and consider double sorts by size 

(using market capitalization as the proxy for size) and the standard Amihud (2002) measure of 

illiquidity, we find that the cost of capital is lower for portfolios with higher levels of illiquidity 

in all four size-based portfolios.  For each size group, stocks in the lowest Amihud-based group 

have a cost of capital that is at least 1% higher than that for stocks in the group with the highest 

levels of the Amihud measure.  Thus, we get a result opposite of what we expect a priori.  We 

also conduct Fama and MacBeth (1973) (FM)-type regressions using ICC estimates as the 

dependent variable.  In this analysis, we again find that illiquidity is negatively related to firms’ 

cost of equity capital, controlling for previously known determinants of ICC.  Regressions where 

variables are reduced to a rank ordering yield qualitatively similar results: that illiquidity is 

negatively related to ICC. 

We are cognizant that ICC estimation is reliant on analysts’ forecasts, but given that the 

literature extensively uses these as inputs to cost of capital estimates (Easton, 2009), we feel 

justified in simply extending this literature to liquidity pricing.  But we do perform robustness 

checks with alternative ICC measures.  Specifically, while for the most part we use ICC adapted 

from Pástor, Sinha, and Swaminathan (2008), we report similar conclusions for alternative 

analysts-based ICC computations developed by Easton (2004) and Ohlson and Juettener-Nauroth 

(2005).  We also find that our central conclusion is unchanged when we use a regression-based 

approach (Li and Mohanram, 2014), instead of analysts’ estimates, to compute earnings 
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forecasts. 

The Amihud (2002) measure, which is a monthly average of the ratio of daily absolute 

returns to daily dollar volume, is not without controversy.  Most prominently, Lou and Shu 

(2017) show that the explanatory power of the Amihud measure is primarily due to the 

denominator, dollar volume, and argue therefore that the measure captures mispricing, as 

opposed to illiquidity.  Amihud and Noh (2021) respond by arguing that the expected Amihud 

measure also includes a term for the covariance between absolute return and (the inverse of) 

dollar volume, and after accounting for the expected sign of this covariance, illiquidity remains 

positively priced.  We do include the different components proposed by Amihud and Noh (2021) 

and continue to find evidence that supports a negative relation between Amihud’s illiquidity 

measure and cost of capital estimates.  More specifically, while the covariance term is positively 

priced in standard FM regressions using monthly returns, it is negatively priced in regressions 

that use the cost of capital as the dependent variable. 

Market capitalization (size) plays a crucial role in our cross-sectional regressions.  This 

control is desirable because Lee, Ng, and Swaminathan (2009) have already shown that market 

capitalization is negatively related to ICC.  Further, since both market capitalization and the 

Amihud illiquidity measure are highly skewed, it is desirable to use functional forms that reduce 

the influence of extreme size and illiquidity observations.  We therefore follow Lou and Shu 

(2019) as well as Amihud and Noh (2021) and use the logarithms of size and Amihud in our 

regressions.  While these variables are highly negatively correlated in the cross-section, we show 

that it is only illiquidity that flips sign from positive to negative when it is included along with 

market capitalization, suggesting that it noisily proxies for (inverse) size when size is excluded. 
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We examine the robustness of our findings in a “holdout” sample of NASDAQ stocks 

from 1983 to 2018.  The findings are qualitatively unchanged relative to those for stocks listed 

on NYSE/AMEX.  Splitting our sample into two equal halves by time also results in unchanged 

conclusions within each sub-period. 

We consider alternative illiquidity measures; specifically, the Lesmond, Ogden, and 

Trzcinka (1999) measure, the Pástor and Stambaugh (2003) measure, and the original measure, 

namely, the quoted spread, considered by Amihud and Mendelson (1986).  We further extend 

our analysis to account for liquidity risk.  Specifically, we consider whether the standard 

measures of liquidity risk developed by Acharya and Pedersen (2005) as well as Pástor and 

Stambaugh (2003) are related to ICC.  Finally, we consider whether higher values of the 

information risk measure PIN (Easley, Hvidkjaer, and O’Hara, 2002, as modified by Duarte, Hu, 

and Young, 2020) lead to higher values of ICC.  We find no evidence that alternative illiquidity 

proxies, liquidity risk, or PIN are reliably related to cost of capital estimates. 

To see if ICC and illiquidity are related at the aggregate (market-wide) level, we model 

the joint dynamics between the value-weighted levels of the Amihud measure and ICC.  

Specifically, we perform a vector autoregression (VAR) between these measures.  The resulting 

impulse response functions do not yield evidence that innovations in illiquidity help forecast 

those in aggregate ICC or vice versa. 

For effectively addressing the joint determination of ICC and liquidity, we next perform a 

difference-in-differences (DiD) estimation around the exogenous brokerage closures described in 

Kelly and Ljungqvist (2012).4  These authors show that the closures led to a loss of sell-side 

analyst coverage and made the affected stocks less liquid (with the proposed pathway of 

                                                            
4 We eschew decimalization, owing to the controversy surrounding the impact of this event on trading costs 
(Chakravarty, Panchapagesan, and Wood, 2005; Eaton, Irvine, and Liu, 2021). 
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increased information asymmetry).  In our sample, we first verify the basic Kelly and Ljungqvist 

(2012) finding of decreased liquidity following the closures.  We then examine how ICC behaves 

in the same event windows for treated and control stocks.  We find no evidence of an increase in 

ICC for the treated stocks relative to the controls; in fact, the point estimates show a decrease 

instead, which is not statistically significant.  Thus, the DiD confirms our basic finding that 

liquidity decreases are not accompanied by increases in corporations’ cost of capital. 

We are aware of the paper by Saad and Samet (2017), who show that cost of capital 

estimates are positively related to illiquidity, using panel data across several countries.  We 

instead use U.S. data to benchmark our work against the extensive work done on domestic 

illiquidity premia.  Nonetheless, we point out another key difference: Saad and Samet (2017) use 

the book value of assets as a measure of firm size, whereas we use market capitalization, to be 

consistent with Amihud and Noh (2021).  Since we confirm Lee, Ng, and Swaminathan’s (2009) 

finding that market capitalization is inversely related to ICC,5 there is a possibility that this 

variable may be picking up the effect of a hitherto undiscovered liquidity measure that 

commands an ICC premium.  However, we do include an arsenal of direct illiquidity proxies, 

and find no evidence that these are positively related to firms’ costs of capital.  We note that any 

as-yet undiscovered measure, in addition to being cross-sectionally priced, would need to be 

reconciled with the following additional findings that do not depend on size controls: First, the 

dynamics of the standard Amihud illiquidity measure are not related to those of ICC at the 

market-wide level.  Second, our DiD event (Kelly and Ljungqvist, 2012) increases Amihud 

illiquidity but is not associated with an ICC increase. 

                                                            
5 Berk (1993) proposes that market capitalization can be priced because it measures omitted risk-based variables.  
He notes that high values of such risk proxies would depress the price, implying lower market capitalization (with 
higher ICC and higher required returns). 
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Our findings support Constantinides (1986), who argues that transactions costs have no 

effect on long-run equity premia, since investors respond to illiquidity by scaling back the 

frequency and volume of their trades.  But we do confirm that the Amihud measure is positively 

related to short-horizon (monthly) returns, especially for small firms.  Thus, we emphasize that 

our results do not imply that illiquidity does not lead to higher short-term required returns.  As 

Amihud and Mendelson (1986) and Constantinides (1986) point out, investor horizons matter in 

illiquidity pricing.  Short-horizon investors may well price liquidity at their trading horizon.  This 

possibility notwithstanding, we find no robust evidence from all of our tests that the discount 

rates of long-term projects should be adversely affected by illiquidity or liquidity risk. 

The negative sign on illiquidity in ICC regressions, and its strong significance, are 

intriguing.  First, that we do find this relation reduces the likelihood that our cross-sectional 

regressions suffer from a lack of power to detect an ICC-illiquidity connection.  But why is this 

connection in a counter-intuitive direction?  On this issue we find that risk-based determinants of 

the cost of capital are generally of a consistent sign.  For example, both market beta and book-to-

market are significantly positively related to ICC.  The former is consistent with the simple 

Capital Asset Pricing Model (CAPM) and the latter is consistent with book-to-market being a 

proxy for distress risk, as in Fama and French (1992).  The signs of these coefficients lend 

confidence that the cost of capital regression is well-specified, which in turn lends confidence to 

the reliability of the Amihud coefficient estimates.  We further consider why illiquid firms have 

lower costs of capital.  We find that such firms tend to have lower book-market ratios as well as 

low share turnover.  These findings indicate illiquid firms have low differences of opinion 

amongst investors and are thus perceived to be low risk in the sense of Berk, Green, and Naik 

(1999), which implies lower ICC. 
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This paper is organized as follows.  Section 1 discusses the method for computing ICC. 

Section 2 discusses data and summary statistics.  Section 3 presents cross-sectional results 

linking illiquidity with firms’ costs of capital.  Section 4 analyzes the aggregate time-series links 

between illiquidity and cost of capital.  Section 5 presents the analysis involving NASDAQ 

stocks. Section 6 presents results involving alternate liquidity measures, liquidity risk, and the 

probability of informed trading.  Section 7 performs a DiD estimation around brokerage closures. 

Section 8 analyzes why illiquid firms command lower costs of capital. Section 9 concludes. 

 

1. Implied Cost of Capital 

In this section, we describe the methodology used to estimate the firm-level implied cost 

of capital (ICC).  Our estimation of firm-level ICC follows the approach of Li, Ng, and 

Swaminathan (2013).6  The firm-level ICC is constructed as the internal rate of return that 

equates the present value of future dividends/free cash flows to the current stock price:7 

 
𝑃𝑡 = �

𝐸𝑡(𝐹𝐹𝐹𝐸𝑡+𝑘)
(1 + 𝑟𝑒)𝑘

∞

𝑘=1

,  
 

(1) 

where 𝑃𝑡 is the current stock price, 𝐸𝑡(𝐹𝐹𝐹𝐸𝑡+𝑘) is the expected future free cash flows to equity 

for period 𝑡 + 𝑘 conditional on information available at time 𝑡, and 𝑟𝑒  is the long-term cost of 

equity capital at time 𝑡. 

There are two key assumptions in our empirical implementation of the free cash flow 

model: (a) short-run earnings growth rates converge in the long-run to the growth rate of the 

overall economy and (b) competition drives economic profits on new investments to zero in the 

long-run (the marginal rate of return on investment—the ROI on the next dollar of investment—
                                                            
6 Also see Pástor, Sinha, and Swaminathan (2008) and Lee, Ng, and Swaminathan (2009). 
7 We use the term “dividends” interchangeably with free cash flows to equity (𝐹𝐹𝐹𝐸) to describe all cash flows 
available to equity. 
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will converge to the cost of capital).  We use these assumptions to forecast earnings growth rates 

and free cash flows during the transition period from the short-run to the long-run steady-state. 

We implement Equation (1) in two parts: i) the present value of free cash flows up to a 

terminal period 𝑡 + 𝑇, and ii) a terminal value that captures the present value of free cash flows 

beyond the terminal period.  We estimate free cash flows up to year 𝑡 + 𝑇, as the product of 

annual earnings forecasts and one minus the plowback rate: 

 𝐸𝑡(𝐹𝐹𝐹𝐸𝑡+𝑘) = 𝐹𝐸𝑡+𝑘 × (1 − 𝑏𝑡+𝑘),  (2) 

where 𝐹𝐸𝑡+𝑘 and 𝑏𝑡+𝑘  are earnings forecasts and plowback rate forecasts for year 𝑡 + 𝑘, 

respectively.  Beyond 𝑡 + 𝑇, we assume that future investments produce zero economic profits 

and thus apply a steady state perpetuity formula to determine terminal value.  The value of 𝑇, 

following Li, Ng, and Swaminathan (2013), is set to be 15 years.  ICC is then determined as the 

discount rate that satisfies Equation (1).  We present full details of our ICC computations in the 

Appendix.  Our basic premise is that if illiquidity is a consideration in setting long-term discount 

rates for corporations, then higher illiquidity should imply higher ICC in the cross-section.  We 

use our panel of monthly ICC estimates to formally test this hypothesis. 

 

2. Data and Summary Statistics 

For empirical tests involving ICC, our sample begins in January 1977 due to the 

availability of I/B/E/S analyst consensus earnings forecasts.  Our sample period ends in 

December 2018.  For tests involving monthly returns, we extend our sample back to 1955 in 

order to replicate the analysis in Amihud and Noh (2021).  To be consistent with these authors, 

we also limit our primary sample to NYSE/AMEX stocks.  However, we examine the robustness 

of our key findings with a “holdout” sample of NASDAQ stocks in Section 5.  The previous 
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section described the methodology for computing ICC, and now we turn to describing the other 

key variables used in our empirical analysis. 

ILLIQ is the Amihud (2002) measure of illiquidity calculated at the end of every month 

using daily return and dollar trading volume over the prior 12 months (with minimum 200 

trading days while excluding days with negative prices or trading volume below 100 shares).  It 

is defined as the average of the ratio of absolute return to dollar trading volume for a given stock 

𝑖 at the end of month 𝑡: 

 
𝐼𝐼𝐼𝐼𝑄𝑖𝑡 =

1
𝐷𝑖𝑡

�
|𝑅𝑖𝑖|
𝑉𝑉𝐼𝐷𝑖𝑖

𝐷𝑖𝑖

𝑖=1

, 
 

(3) 

where 𝐷𝑖𝑡 is the number of eligible trading days over the prior 12 months, 𝑅𝑖𝑖 is the daily stock 

return and 𝑉𝑉𝐼𝐷𝑖𝑖  is the daily dollar trading volume.  The ratio is a measure of the daily price 

impact of order flow. 

SIZE is the market capitalization in billions of dollars computed at the end of every 

month. 

B/M is the ratio of book value equity to market value of equity computed at the end of 

every month where the book value of equity is computed as in Fama and French (1992). 

Return11 is the 11-month cumulative stock return skipping the most recent month and is 

a measure of past price momentum.  For instance, this measure as of the end of December 2018 

would be the cumulative return from January 2018 to November 2018. 

Return1 is the most recent month’s stock return and captures monthly return reversals as 

in Jegadeesh (1990). 

Beta is the market beta calculated using monthly data over the last 60 months with a 

minimum requirement of 36 months. 
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GP/AT is the ratio of gross profits to total assets as in Novy-Marx (2013). 

AG is the percentage growth in total assets as in Cooper, Gulen, and Schill (2008). 

The sample consists of all NYSE/AMEX stocks with prices between $5 and $1,000 and 

whose ILLIQ is not in the top 1% or bottom 1% each month (as in Amihud and Noh, 2021).  In 

addition, we also exclude all ADRs, REITs, closed-end funds, and unit trusts (excluding CRSP 

share codes above 11).  The accounting variables in the list above are assumed to be known only 

six months after the fiscal year-end. 

Panel A of Table 1 reports summary statistics on ILLIQ and other firm characteristics 

described above.  The key thing to note in Panel A is that both ILLIQ and SIZE have very high 

positive (standardized) skewness with values of 4.858 and 5.092 respectively (skewness of the 

normal distribution is zero).  This potentially induces an undue influence of extreme observations 

in regression analysis.  However, taking natural logs reduces the skewness of both ILLIQ and 

SIZE and brings it close to zero: Ln(ILLIQ) has a skewness of 0.221 and Ln(SIZE) has a 

skewness of 0.109.  This can also be seen intuitively by comparing the difference between the 

means and medians of both variables before and after taking natural logs.  The importance of 

taking logs will become clearer when we examine the cross-sectional correlation between ILLIQ 

and SIZE (Table 2).  We also take the natural log of (1+AG) to take into account the high 

skewness in asset growth (skewness of 9.488 in AG vs. skewness of 1.643 in Ln(1+AG)). 

Panel B of Table 1 reports annual (as of June 30) summary statistics for the implied risk 

premium (ICC − 10-year Treasury yield).  For convenience, in the remainder of the paper, we 

continue to use the same notation (i.e., ICC) for this adjusted cost of capital.  The number of 

NYSE/AMEX firms with available ICC estimates increases from 655 in 1977 to around 1,000 

towards the end of the sample period.  The drop in sample size towards the end of the period is 
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due to the exclusion of NASDAQ firms.  The equal-weighted mean ICC exhibits considerable 

time variation over time. 

Table 2 reports (time-series averages of) cross-sectional correlations among ICC and the 

various firm characteristics.  We report Pearson correlations below the diagonal and Spearman 

rank correlations in italics above the diagonal.  The Pearson correlation between SIZE and ILLIQ 

is only −0.175 which does not seem that high, but this is distorted by the high positive skewness 

in both variables.  The rank correlation between ILLIQ and SIZE which eliminates the effects of 

outliers and accounts for skewness, on the other hand, is a very high (in absolute value) –0.943.  

The Pearson correlation increases to −0.538 if we take the logarithm of SIZE but leave ILLIQ 

untouched.  The correlation increases further to −0.586 if we take the logarithm of ILLIQ but 

leave SIZE untouched.  But the correlation increases to −0.937 (similar to the rank correlation) 

when we take logarithms of both ILLIQ and SIZE revealing that a stock’s Amihud illiquidity is 

strongly associated with its market capitalization: large firms are highly liquid and small firms 

are highly illiquid.  Overall, the results in Table 2 show that Pearson correlations after taking the 

logarithm of ILLIQ are similar to rank correlations involving ILLIQ suggesting that it is desirable 

to use logarithms of ILLIQ (or ranks of ILLIQ) for robust empirical findings.  We take this into 

account in our cross-sectional asset pricing tests that examine the relationship between illiquidity 

and cost of capital. 

ICC is positively correlated with ILLIQ and Ln(ILLIQ) suggesting that highly illiquid 

firms have high cost of capital, and negatively correlated with SIZE and Ln(SIZE) suggesting 

large firms have low cost of capital.  Given the high negative correlation between Ln(SIZE) and 

Ln(ILLIQ), however, it is unclear based on these univariate results whether SIZE or ILLIQ might 

be a proxy of the other.  We examine this more carefully using conditional portfolio sorts and 
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cross-sectional regression tests. 

In other correlations, ICC is positively correlated with Beta and Ln(B/M) and negatively 

correlated with Return11.  The positive correlation between ICC and Beta is consistent with the 

predictions of the simple CAPM (unlike in the case of realized returns).  The positive correlation 

between ICC and Ln(B/M) can be consistent with both risk and mispricing interpretations.  The 

negative correlation between ICC and past price momentum, however, is inconsistent with a risk 

interpretation because it suggests high momentum stocks, in fact, have lower expected returns 

not higher expected returns.  As discussed earlier, in all of the above, rank correlations are 

similar to those based on logs. 

 

3. Empirical Results 

In this section, we discuss our central results connecting illiquidity to monthly realized 

returns and ICC, using portfolio and regression approaches. 

 

3.1. Results from Size-Illiquidity Portfolios 

Ever since Banz (1981) and Fama and French (1992), it has been known that market 

capitalization influences realized returns.  Fama and French (1993) provide a risk-based 

interpretation for size, arguing that small firms are more likely to get distressed, and therefore 

command higher expected returns.  As we show in the previous section, size and illiquidity 

exhibit extremely high cross-sectional correlation.  So, the question is the following: Controlling 

for SIZE, is illiquidity positively priced in short-term returns and long-term cost of capital?  We 

examine this issue first through portfolio tests.  This analysis has the virtue of not depending on 

any specific functional form of illiquidity or market capitalization. 



13 

One possible approach is to form four SIZE-based portfolios and then divide each SIZE 

portfolio into four ILLIQ portfolios to construct a total of 16 SIZE-ILLIQ portfolios.  Then, in 

each SIZE quartile, we can compute average returns and average ICC across the 4 ILLIQ 

portfolios to address our illiquidity pricing question.  Given the high correlation between SIZE 

and ILLIQ ranks, however, a simple conditional bivariate sort does not suffice to control for the 

SIZE effect in ILLIQ.8  Sorting first on SIZE and then sorting again on ILLIQ potentially could 

sort and simply re-sort on SIZE.  In a 4×4 bivariate conditional sort, indeed the median SIZE of 

ILLIQ portfolios (not reported in a table) declines sharply from low to high ILLIQ portfolios in 

every SIZE quartile.  For instance, in the largest size quartile, the median size declines from $31 

billion to $5 billion as we move from the lowest to the highest ILLIQ portfolio and in the 

smallest size quartile from $0.35 billion and $0.12 billion. 

We pursue a different approach to keep the median SIZE more stable across the four 

ILLIQ portfolios.  First, we construct four SIZE portfolios, then we divide each SIZE portfolio 

into four more SIZE portfolios, and finally we divide each of the second-stage SIZE portfolios 

into four ILLIQ portfolios.  This generates a total of 64 SIZE-SIZE-ILLIQ portfolios.  Let us 

denote each portfolio with the index (𝑖, 𝑗,𝑘) where 𝑖 = 1 to 4 denotes the first-stage SIZE sort, 

𝑗 = 1 to 4 denotes the second-stage SIZE sort and 𝑘 = 1 to 4 denotes the third stage ILLIQ sort.  

Then for each 𝑖, we combine the same rank ILLIQ portfolios across the four second-stage SIZE 

portfolios.  Thus, we combine (𝑖, 1,1), (𝑖, 2,1), (𝑖, 3,1), and (𝑖, 4,1) to construct the Low ILLIQ 

portfolio, (𝑖, 1,2), (𝑖, 2,2), (𝑖, 3,2), and (𝑖, 4,2) to construct ILLIQ portfolio 2, and so on.  We thus 

reduce the 64 SIZE-SIZE-ILLIQ portfolios into 16 SIZE-ILLIQ portfolios (we go from (𝑖, 𝑗, 𝑘) to 

                                                            
8 Results from portfolio sorts are less influenced by outliers since they are analogous to discrete ranks.  Using 
continuous ranks (from 0 to 1) of independent variables in cross-sectional regressions is the equivalent of portfolio 
sorts since the slope coefficients can be interpreted as returns on zero-investment long-short portfolios constructed 
on that variable in a multivariate setting.  Multivariate portfolio sorts, on the other hand, can better capture any non-
linearity in the relationship between the variable of interest and expected returns. 
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(𝑖, 𝑘)).  This sequential sorting approach does a better job of controlling for the high correlation 

between SIZE and ILLIQ ranks and ensures that the median SIZE remains more stable across the 

four ILLIQ portfolios.  In the largest size quartile, now the median size declines from $20 billion 

to $10 billion moving from the lowest to the highest ILLIQ portfolio, and in the smallest size 

quintile from $0.26 billion to $0.23 billion (we discuss these portfolio characteristics further in 

Section 8). 

Now we turn to discussing the results.  Panel A of Table 3 reports average annualized 

excess returns (in excess of monthly T-bill return) two months after the portfolio formation date 

for the 16 SIZE-ILLIQ portfolios.  We employ this two-month gap to minimize any 

microstructure concerns such as bid-ask bounce.  The results show that ILLIQ is priced only in 

small stocks even in the short run.  The average spread between low and high ILLIQ portfolio is 

6.56% annualized and highly significant in the Small portfolio and an insignificant 0.20% in the 

Big portfolio.  The spread is positive and insignificant in portfolio Q3 and only marginally 

significant in portfolio Q2. 

Panel B reports results for long-term implied cost of capital.  The results uniformly show 

that in every SIZE quartile, the high ILLIQ portfolio has a lower cost of capital than the low 

ILLIQ portfolio in spite of the fact that the high ILLIQ portfolios are still a bit smaller in size 

(smaller firms have higher ICC as we can see in Panel B).  Specifically, in each SIZE quartile, 

the high ILLIQ portfolio has an implied cost of capital that is at least 1% lower than that of the 

low ILLIQ portfolio.  The t-statistics (computed with 36 Newey-West lags to control for the high 

serial dependence in ICC) are all statistically significant.  The portfolio with the lowest average 

ICC in Panel B is the Big portfolio with High illiquidity. 

In Figure 1, we provide a three-dimensional chart for average realized returns and ICC, 
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which depicts how these quantities vary across size and illiquidity groups.  As can be seen, while 

there is some evidence that realized returns do increase with illiquidity, there is no corresponding 

pattern for ICC across illiquidity sorts.  Overall, the portfolio results show that there is no 

illiquidity premium in firms’ cost of capital controlling for firm size, and that the illiquidity 

premium in monthly returns may be a short-lived phenomenon concentrated among small stocks. 

 

3.2 Fama-MacBeth Regressions 

In this section, we discuss results from FM regressions involving returns and ICC 

regressed on ILLIQ and other firm characteristics.  For our base case, we modify the regression 

specification from Amihud and Noh (2021) and Lou and Shu (2017) with the addition of market 

beta:9 

 𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝑎 + 𝑏1𝐼𝐿(𝐼𝐼𝐼𝐼𝑄𝑖𝑡−2) + 𝑏2𝐼𝐿(𝑆𝐼𝑆𝐸𝑖𝑡−2) + 𝑏3𝐼𝐿�𝐵 𝑀𝑖𝑖−1⁄ �
+𝑏4𝑅𝑅𝑡𝑅𝑟𝐿11𝑖𝑡−2 + 𝑏5𝑅𝑅𝑡𝑅𝑟𝐿𝑖𝑡−1 + 𝑏6𝐵𝑅𝑡𝑎𝑖𝑡−2 + 𝑅𝑖𝑡 ,

 

 

 
(4) 

where (𝑅𝑖𝑡 − 𝑅𝑓𝑡) is the monthly excess returns in excess of monthly T-bill returns.  Just as in 

Amihud and Noh (2021) the independent variables (except the last-month return) are lagged by 

two months to minimize microstructure effects.  Ln(B/M) is calculated at the end of previous 

year of the current month.  The monthly ICC regression specification is as follows: 

 𝐼𝐹𝐹𝑖𝑡 = 𝑎 + 𝑏1𝐼𝐿(𝐼𝐼𝐼𝐼𝑄𝑖𝑡−1) + 𝑏2𝐼𝐿(𝑆𝐼𝑆𝐸𝑖𝑡−1) + 𝑏3𝐼𝐿�𝐵 𝑀𝑖𝑖−1⁄ �
+𝑏4𝑅𝑅𝑡𝑅𝑟𝐿11𝑖𝑡−2 + 𝑏5𝑅𝑅𝑡𝑅𝑟𝐿𝑖𝑡−1 + 𝑏6𝐵𝑅𝑡𝑎𝑖𝑡−1 + 𝑅𝑖𝑡 ,

 

 

 
(5) 

where 𝐼𝐹𝐹𝑖𝑡 is the implied cost of capital (in excess of the 10-year treasury yield).  All 

independent variables are lagged by only one month (except 11-month return) since 

microstructure concerns are not an issue with ICC.  We note that in principle, it is not necessary 

                                                            
9 Estimating the regressions without the market beta does not significantly change any of our findings.  We add 
market beta because it is an important risk control for ICC and is positively correlated with ICC (see Table 2). 
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to lag illiquidity at all in ICC regressions, as the theoretical arguments suggest a 

contemporaneous positive relation between these variables.  Nonetheless, to ensure that the 

inputs to ICC are available to the investor in real time when the relation is estimated, we lag 

illiquidity by one month.  Not doing so gives substantially similar results. 

The main results are presented in Table 4.  Panel A presents results for two time periods 

and quantities: i) realized returns for the 1955 to 2016 time-period to be consistent with Amihud 

and Noh (2021) and ii) realized returns as well as ICC for the 1977 to 2018 time period, which 

corresponds to the availability of the ICC data.  Given the high negative correlation between 

Ln(ILLIQ) and Ln(SIZE) we first estimate the cross-sectional regressions by only including one 

or the other variable.  In specification (1), where we estimate the regressions without Ln(SIZE), 

the coefficient on Ln(ILLIQ) has a uniformly positive sign in both return and ICC regressions.  In 

the return regressions, the coefficient on Ln(ILLIQ) is statistically significant for the 1955 to 

2016 time period but insignificant for the 1977-2018 time period.  In the ICC regressions, the 

coefficient on Ln(ILLIQ) is positive and highly significant.  In specification (2), where we 

estimate the regressions without Ln(ILLIQ), Ln(SIZE) has a uniformly negative sign although the 

coefficients in the return regressions are statistically insignificant.  In specification (3) where we 

include both Ln(ILLIQ) and Ln(SIZE), in the return regressions, the coefficient on Ln(ILLIQ) is 

positive and statistically significant for the 1955-2016 time period, and its magnitude is roughly 

similar to that in Amihud and Noh (2021); see their Table 1.  The coefficient, however, is 

insignificant for the 1977-2018 time period. 

In the ICC regressions, the Ln(ILLIQ) coefficient flips sign and becomes significantly 

negative while the coefficient on Ln(SIZE) remains significantly negative.  This strongly 

suggests that Ln(ILLIQ) is a proxy of Ln(SIZE) and its positive relationship with ICC in the 
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absence of Ln(SIZE) is due to its high negative correlation with Ln(SIZE).  The negative 

relationship between Ln(ILLIQ) and ICC in the presence of Ln(SIZE) is also consistent with the 

portfolio results in Table 3.  The coefficient of −0.285 for Ln(ILLIQ) implies that a one standard 

deviation increase in Ln(ILLIQ) leads to a decline of 0.62% in ICC.10 

Ln(B/M) is significantly positively related to both returns and ICC which is consistent 

with the risk interpretations in Fama and French (1992) and Berk, Green, and Naik (1999).  

While Beta is not related to realized returns, it is significantly positively related to ICC 

suggesting that investors do require a higher cost of capital for higher beta stocks.  Past price 

momentum, Return11, not surprisingly has a positive sign in the return regressions although it is 

negatively related to ICC which suggests that past winners have low long-term cost of capital.  

This is inconsistent with risk-based interpretations of price momentum. 

In Figure A1 in the online appendix, we plot the time-series of FM coefficients on 

Ln(ILLIQ) where the dependent variable is ICC for specification 3 in Panel A of Table 4.  The 

figure demonstrates that outliers do not drive our result of a negative relation between illiquidity 

and ICC.  The coefficient remains below zero for sustained periods of time, though there also are 

episodes of positivity.  Overall, the time-series pattern is inconsistent with the notion that 

illiquidity implies higher costs of capital. 

Recent research shows theoretically and empirically that profitability and asset growth 

are strongly related to the cross-section of stock returns (see Novy-Marx, 2013; Kogan and 

Papanikolaou, 2013; Cooper, Gulen, and Schill, 2008; and Cohen, Gompers, and Vuolteenaho, 

2002).  Therefore, in Panel B of Table 4 we add two additional control variables: GP/AT and 

Ln(1+AG).  Ln(ILLIQ) continues to be strongly negatively associated with ICC in the presence of 

                                                            
10 We use the maximum number of stocks available for each estimation.  However, using the same sample across the 
ICC and realized returns regressions does not materially alter the conclusions.  Results are available on request. 
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GP/AT and Ln(1+AG).  The slope coefficient on Ln(ILLIQ) is, in fact, slightly higher in 

magnitude at −0.346 and more significant (t-statistic = −3.00) in Panel B than in Panel A (a 

coefficient of −0.285 and t-statistic of −2.28), implying that a one standard deviation increase in 

Ln(ILLIQ) leads to a decline of 0.75% in ICC.  While profitability (GP/AT), as expected, is 

positively related to monthly returns, it is significantly negatively related to ICC which suggests 

profitable firms tend to have low long-term cost of capital.  Asset growth is negatively related to 

both returns and ICC. 

We also estimate the regression specifications in Equations (4) and (5) in ranks, i.e., 

where all the independent variables are converted to rank order with values between 0 and 1.  We 

find (see Table A1 of the online appendix) that the negative relationship between Amihud 

illiquidity and ICC is noticeably stronger (t-statistic of −6.61) in the rank regressions.  The 

coefficients in rank regressions are annualized premiums for each independent variable.  The 

negative premium of −4.294% corresponding to Ln(ILLIQ) is economically significant and 

comparable in magnitude to the premiums for Ln(SIZE) (−7.823%) and Ln(B/M) (3.777%). 

In Table A2 of the online appendix, we include additional factor betas beyond the market 

beta as controls.  Specifically, we estimate betas using the five factor Fama and French model, 

with the same method as that used for the market beta, and include them as controls.  The results 

do not change appreciably.  We find that ICC continues to be negatively related to ILLIQ, while 

monthly returns continue to be positively related to ILLIQ.  In Table A3, we consider the 

robustness of our findings by splitting the time-series into two equal halves and estimating the 

ICC regressions separately for each subsample.  The coefficient on ILLIQ continues to be 

negative and is significant at the 10% level or less in all cases save one. 

Both Brennan, Huh, and Subrahmanyam (2013) and Lou and Shu (2017) emphasize the 
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need to have a dimensionless measure in the denominator of Amihud (2002) illiquidity, as 

opposed to using dollar volume, which depends on the scale of the firm.  In other words, dollar 

volume might be higher simply because the firm is bigger.  They suggest replacing dollar volume 

with share turnover which is dimensionless.  Accordingly, in Table 5 we replace the dollar 

volume measure of Amihud with its turnover-based counterpart.  The only change relative to 

Table 4 is that the denominator of the measure is replaced with share turnover. 

Again, we find that the turnover based Amihud measure is positively related to realized 

returns (although marginally significantly for the 1977-2018 time period) but negatively related 

to ICC.11  The significance of illiquidity for ICC drops, however, relative to Panel B of Table 4 

(t-statistic of −2.14 vs. −3.00).  Regardless, there is no evidence that higher values of the 

turnover-based version of the Amihud illiquidity measure are associated with higher ICC. 

The results in Table 3 suggest that illiquidity is priced (in monthly realized returns) only 

within small stocks.  We explore this further in a multivariate regression setting.  Table 6 reports 

regression results for large stocks and small stocks separately.  Stocks with market capitalization 

above the NYSE median market capitalization are classified as ‘Large’ and those with market 

capitalization below the median are classified as ‘Small.’  Panel A of Table 6 reports results for 

the base specification and Panel B reports results with the two additional control variables.  The 

results from the return regressions confirm that Ln(ILLIQ) is related to monthly realized returns 

only in small stocks.  The slope coefficients corresponding to Ln(ILLIQ) are much bigger and 

highly significant in small stocks compared to large stocks.  For instance, in Panel A for the 

1955-2016 time period, the slope coefficient on Ln(ILLIQ) is 0.206 (t-statistic = 5.11) among 

small stocks while it is 0.003 (t-statistic = 0.09) among large stocks.  In contrast, the negative 

                                                            
11 For realized returns, we consider the illiquidity-induced bias described by Asparouhova, Bessembinder, and 
Kalcheva (2010).  Specifically, as suggested by these authors, we implement a weighted least squares regression, 
using previous months’ gross returns as weights.  The results are substantively unchanged. 
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relationship between Ln(ILLIQ) and ICC is significant among both large and small stocks (t-

statistics of −8.03 and −2.76, respectively) although it is stronger among large stocks.  This is 

consistent with the finding in Panel B of Table 3 which shows that the Big portfolio with High 

illiquidity has the lowest ICC.  The negative relationship between Ln(ILLIQ) and ICC are 

stronger in Panel B, where we include the two additional controls GP/AT and Ln(1+AG). 

Finally, we examine the robustness of our findings using two variations on our ICCs.  

Our first variation on the ICC calculation is to use alternative approaches to incorporate analysts’ 

projections.  These computations are based on Easton (2004) and Ohlson and Juettener-Nauroth 

(2005).  Our second variation uses regression forecasts of earnings, instead of analysts’ 

estimates, to compute ICC.  We thus apply our base case ICC methodology described in Section 

1 while using the Li and Mohanram (2014) regression-based approach.  The computations of 

earnings forecasts in this case are based on equation (7) of Li and Mohanram (2014).  The results 

are presented in Table A4 of the online appendix. 

We find that the negative relation between Ln(ILLIQ) and ICC is even stronger with the 

alternative ICCs based on analyst forecasts (see Columns 1 and 2).  For the Easton (2004) ICC 

measure, the t-statistic corresponding to Ln(ILLIQ) is −12.93 and for the Ohlson and Juettner-

Nauroth (2005) ICC measure, the t-statistic is −15.12.  The results based on regression forecasts 

of earnings (see Column 3) show that the relation between Ln(ILLIQ) and ICC is still negative 

but insignificant.  Overall, the results show that our findings are not dependent on any one 

approach to estimating the ICC. 

 

3.3 Components of Illiquidity 

Lou and Shu (2017) critique Amihud (2002)’s finding that illiquidity is priced, 
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specifically with respect to the ILLIQ measure introduced in that paper.  They argue that the 

pricing of the Amihud illiquidity measure is driven mainly by the denominator of ILLIQ, the 

dollar trading volume.  They test an alternative measure, which is the average of 1 divided by 

daily dollar trading volume and report that this measure has a correlation of 0.90 with the 

original measure and that it is priced similarly to the original Amihud measure.  Furthermore, 

they find that the piece of the original measure that is orthogonal to the new measure is not 

priced.  In turn, Amihud and Noh (2021) point out that Lou and Shu’s analysis misses an 

important term present in the decomposition of ILLIQ.  Using our notation, the Amihud and Noh 

(2021) decomposition of ILLIQ (using the average as an estimator of expected value) is: 

 𝐼𝐼𝐼𝐼𝑄𝑖𝑡 = |𝑅𝑖𝑡| × 1 𝐷𝑉𝑉𝐼𝑖𝑡⁄ + cov(|𝑅𝑖𝑡|, 1 𝐷𝑉𝑉𝐼𝑖𝑡⁄ ), (6) 

where |𝑅𝑖𝑡| = �∑ |𝑅𝑖𝑖
𝐷𝑖𝑖
𝑖=1 |�/𝐷𝑖𝑡 and 1 𝐷𝑉𝑉𝐼𝑖𝑡⁄ = �∑ 1 𝑉𝑉𝐼𝐷𝑖𝑖⁄𝐷𝑖𝑖

𝑖=1 �/𝐷𝑖𝑡 are calculated in the 

same way as 𝐼𝐼𝐼𝐼𝑄𝑖𝑡 in Equation (3).  The Lou and Shu (2017) decomposition of ILLIQ is the 

first term on the right-hand side of Equation (6) which applies if the covariance is zero.  Amihud 

and Noh (2021) propose the difference between Ln(ILLIQ) and the natural log of the Lou and 

Shu (2017) decomposition (which is just the sum of Ln(|𝑅𝑡|�����) and Ln(1 𝐷𝑉𝑉𝐼𝑡⁄������������)) as an 

approximate measure of the missing covariance term: 

 𝐷𝐼𝐹𝑖𝑡 = 𝐼𝐿(𝐼𝐼𝐼𝐼𝑄𝑖𝑡) − (𝐼𝐿(|𝑅𝑖𝑡| + 𝐼𝐿(1 𝐷𝑉𝑉𝐼𝑖𝑡⁄  ). (7) 

In Table 7, we replace Ln(ILLIQ) with Ln(|R|), Ln(1/DVOL), and DIF to understand how 

the different components of illiquidity are priced.  For the 1955-2016 time period, we find that 

both Ln(1/DVOL) and DIF are priced positively in monthly returns but mostly for small stocks.  

The absolute return component, Ln(|R|), is negatively related to returns, but again significantly 

only for small stocks.  Although the signs on the components are similar, the results are quite a 

bit weaker for the 1977-2018 time period. 
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In the ICC regressions we find that the absolute return component is strongly positively 

related to ICC (similar to the positive relationship reported between volatility and ICC among 

international stocks in Lee, Ng, and Swaminathan, 2009) while inverse dollar volume and DIF 

are negatively related.  The negative relationship between inverse dollar volume and ICC is 

particularly strong among large stocks, suggesting that those large stocks with lower dollar 

trading volume (low liquidity) have low costs of capital.  Overall, our results involving monthly 

returns confirm the findings in Amihud and Noh (2021) but with the added proviso that the 

short-term illiquidity pricing is really a small stock phenomenon.  Illiquidity does not earn a 

positive premium in the long-term cost of capital net of previously known ICC determinants. 

 

4. Aggregate Liquidity and ICC 

In this section, we examine the dynamic relation between illiquidity and ICC at the 

aggregate level.  The notion, as in Amihud (2002), is that market-level illiquidity should 

positively influence aggregate (market-wide) required returns.  We address the issue using 

simple time-series regressions and a vector autoregression (VAR) analysis. 

 

4.1 Regression Analysis Using ICC and Illiquidity Innovations 

Amihud and Noh (2021) and Amihud (2002) examine the relationship between shocks to 

aggregate illiquidity and stock returns.  They hypothesize that an increase in aggregate market 

illiquidity should increase the expected return on the market and result in a decline in current 

stock prices, all else equal.  They also suggest that shocks to market illiquidity should affect 

small stocks more than large stocks because the former are less liquid. 

Following the Amihud and Noh (2021) approach, each month, we value-weight ILLIQ 
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and its components across individual stocks to construct market-wide illiquidity measures.  We 

transform the market wide measures to logs and denote them as mILLIQ, m|R|, m1/DVOL, and 

the difference between mILLIQ and the sum of m|R| and m1/DVOL as mDIF corresponding to the 

individual stock measures defined in Equation (7).  We then compute the innovations in these 

aggregate time series as follows.  We first estimate an AR(2) model for each time-series over a 

rolling window of 60 months ending in month t (the models for mILLIQ and m1/DVOL also 

include a time trend).  We then compute the innovation at time t+1 as the difference between the 

actual value and the predicted value from the AR(2) model. 

We contemporaneously regress monthly excess market returns (in excess of monthly T-

bill return) and, in turn, an aggregate ICC measure, on innovations to illiquidity and its 

components.  The aggregate ICC is computed by value-weighting the individual stock ICC 

values.  The results are presented in Table 8.  The sample period is 1955-2016 for the return 

regressions and 1977-2018 for the ICC regressions.  While mILLIQ and its components are all 

negatively related to excess market returns as in Amihud and Noh (2021), we do not observe the 

same level of statistical significance and our R2s are also only about one-fifth of the R2s reported 

in their paper. 

The regressions involving aggregate ICC show that there is no reliable relationship 

between this variable and aggregate Amihud-based illiquidity.  Since ICC is a slowly mean 

reverting variable we have also regressed changes in ICC (which is a proxy for discount rate 

news) on innovations to aggregate illiquidity and its components and can report that there is no 

reliable relationship there either.  Overall, the evidence does not support the conjecture that 

shocks to aggregate illiquidity might be associated with increases in aggregate ICC. 
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4.2 Vector Autoregressions 

To allow for the possibility that ICC and illiquidity are jointly determined, we also 

conduct a vector autoregression (VAR) between these variables.  The VAR detects the joint 

dynamics between the two variables while allowing for their cross-dependence.  The idea is that 

a simple contemporaneous regression with illiquidity on the right-hand side and implied risk 

premium on the left-hand side might fail to capture the nature of leads and lags across the series. 

It is appropriate to perform VARs on stationary series.  However, there is reason to 

believe that liquidity has increased over time (Chordia, Roll, and Subrahmanyam, 2001), 

suggesting non-stationarity.  We, therefore, detrend mILLIQ (using a linear time trend).  We plot 

the mICC series, and the detrended mILLIQ series in Figure 2.  Visual inspection does not reveal 

evidence of non-stationarity.  Indeed, in untabulated tests, following the de-trending, we can 

reject the hypothesis that the resulting mILLIQ series has a unit root, based on an augmented 

Dickey-Fuller statistic.  The unadjusted mICC series also does not indicate evidence of a unit 

root. 

The lag length in the VAR is chosen using the Akaike information criterion.  The 

suggested lag length is one and this is what we use in our analysis.12  Table 9 reports the VAR 

coefficients and t-statistics in parentheses below the coefficients.  While there is persistence in 

both series (in the sense that own lags are strongly significant), we find no evidence that one 

series forecasts the other in the simple VAR; the cross-lag coefficients are both insignificant. 

In Figure 3 we report the impulse response functions for each variable relative to the 

other.  We find that the standard error bounds include zero in each case, again suggesting that 

neither variable is useful in forecasting the other.  Finally, the last row in Table 9 indicates that 

the contemporaneous correlation in the innovations to the two series is an insignificant 3.1%.  
                                                            
12 Alternative lag lengths of up to twelve make no material difference to our results. 
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The VAR results therefore confirm that there is no dynamic relation between aggregate cost of 

capital estimates and aggregate illiquidity.  Aggregate illiquidity does not help forecast changes 

in costs of capital, and there is no significant contemporaneous relation between the two 

variables. 

 

5. Cross-Sectional Regressions Involving NASDAQ Stocks 

In this section, we examine the robustness of our cross-sectional findings in Section 3 

involving NYSE/AMEX stocks using NASDAQ stocks.  The filters employed for NASDAQ 

stocks are the same as those for NYSE/AMEX stocks, as described in Section 2.  Further, it is 

known that trading volume is often overstated for NASDAQ stocks, and therefore we use the 

procedure recommended by Anderson and Dyl (2005) to adjust for this overstatement.13  The 

sample period is 1983-2018, since NASDAQ trading volume is not available prior to 1983.  We 

report results for two samples: a NASDAQ sample and a combined NYSE/AMEX/NASDAQ 

sample.  The results are presented in Table 10.  Specification (1) presents results using 

Ln(ILLIQ), while specification (2) replaces Ln(ILLIQ) with its components and drops GP/AT and 

Ln(1+AG).  Return refers to excess returns and ICC is the cost of capital estimate (less the ten-

year Treasury bond yield). 

The results show that Ln(ILLIQ) is positively priced in monthly realized returns in both 

the NASDAQ sample and the combined sample.  In the ICC regressions, just as in Table 4 

involving NYSE/AMEX stocks, Ln(ILLIQ) is significantly negatively related to ICC.  The 

coefficients on Ln(ILLIQ) (in absolute terms) are in fact higher and more significant than the 

corresponding one in Panel B of Table 4.  The results involving components of Ln(ILLIQ) mirror 
                                                            
13 We correct for double counting of volume in NASDAQ by following Anderson and Dyl (2005).  Specifically, for 
the periods prior to February 2001, February to December 2001, and calendar years 2002 to 2004, we divide 
NASDAQ volume by 2.0, 1.8, and 1.6, respectively. 
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the results in Table 7.  The absolute return component, Ln(|R|), is negatively related to returns 

and the inverse dollar volume and DIF are positively related to realized returns.  In the ICC 

regressions, the absolute return component is strongly positively related to ICC while the inverse 

dollar volume and DIF are negatively related.  In summary, the results involving NASDAQ 

stocks confirm our key findings and provide an important robustness check for our primary 

results. 

 

6. Alternative Measures of Liquidity, Liquidity Risk, and Information Risk 

In this section, we examine the relationship between ICC and measures of liquidity other 

than that of Amihud (2002), and also investigate the role of liquidity risk and information risk in 

determining a firm’s long-term cost of capital. 

Table 11 reports results from cross-sectional regressions examining the relationship 

among returns, ICC, and three alternative measures of liquidity.  Specifically, we consider the 

Lesmond, Ogden, and Trzcinka (1999) measure (LOT), which is the proportion of zero return 

days within a month, the Pástor and Stambaugh (2003) measure (PS), and the original Amihud 

and Mendelson (1986) measure, which is the closing quoted spread from CRSP.  We take natural 

logs of the quoted spread and (1+LOT) (since LOT can be zero) and leave the PS measure as is 

(since PS can be negative).  The sample consists of NYSE, AMEX, and NASDAQ stocks.  The 

time period is 1977 to 2018 for LOT and the quoted spread and 1983 to 2018 for PS.  The results 

show that Ln(Spread) is negatively related to both returns and ICC.  PS and Ln(1+LOT) are not 

significantly related to either returns or ICC.14 

A major branch of the literature on liquidity is the introduction of the role of liquidity 
                                                            
14 Results based on just using LOT are no different.  We have also tried the LM12 liquidity measure of Liu (2006) 
and can report that Ln(LM12) is significantly positively related to monthly returns and negatively related to ICC just 
as in the case of Ln(ILLIQ). 
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risk.  The idea is that fluctuations in illiquidity should be priced in addition to illiquidity itself.  

The two seminal contributions to this area are Acharya and Pedersen (2005) and Pástor and 

Stambaugh (2003).  A second and parallel development on linking market microstructure to asset 

pricing is to measure the probability of informed trading (or information risk) directly using a 

structural model.  This model uses signed buys and sells on a daily basis to compute PIN, a 

measure of informed trading.  The original PIN measure of Easley, Hvidkjaer, and O’Hara 

(2002) is modified by Duarte, Hu, and Young (2020) and is termed GPIN.15  The key 

contribution in Easley, Hvidkjaer, and O’Hara (2002) is to show that the probability of 

information-based trading commands a positive premium in the cross-section of monthly stock 

returns.  The logic is that such trading distorts the portfolios of uninformed traders, thus inducing 

them to demand a return premium.  This return premium could extend to a premium in firms’ 

cost of capital or ICC (Easley and O’Hara, 2004). 

Based on the above reasoning, we compute three quantities: AP beta is the liquidity beta 

calculated as in Acharya and Pedersen (2005), PS beta is the liquidity beta calculated as in Pástor 

and Stambaugh (2003), and GPIN is the generalized PIN calculated as in Duarte, Hu, and Young 

(2020).  The exact procedure is as follows: 

AP beta: We form 25 illiquidity portfolios based on Acharya and Pedersen (2005) for the 

sample period from July 1962 to December 2018.  Specifically, we sort NYSE and AMEX 

stocks with prices between $5 and $1,000 based on their Amihud illiquidity over the prior year 

(with a minimum of 100 days of observations) into 25 portfolios.  We form value-weighted 

portfolios at the end of December of each year with annual rebalancing, and compute portfolio-

level normalized illiquidity each month using prior month’s market capitalization as weights.  

                                                            
15 Duarte, Hu, and Young (2020) modify the original PIN measure to account for uninformed noise trading that is 
captured by high levels of turnover; see their paper for details. 
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We also calculate illiquidity for a market portfolio of NYSE and AMEX stocks with prices 

between $5 and $1,000 and at least 15 days of return and volume data each month and rebalance 

this portfolio monthly.  Innovations in portfolio illiquidity, market illiquidity, and market returns 

are calculated using an AR(2) regression following Acharya and Pedersen (2005).  From 

Equation (24) of their paper, we then calculate four illiquidity betas and a net illiquidity beta 

based on the four illiquidity betas.  The net illiquidity beta (AP beta) is the measure of liquidity 

risk.  The full-sample portfolio net illiquidity betas are then reassigned to individual stocks based 

on the portfolio to which the stock belongs at the end of each year. 

PS beta: We form Pástor and Stambaugh (2003) 10 illiquidity portfolios for the sample 

period from December 1977 to December 2018.  We first calculate liquidity betas for all stocks 

in a regression with three Fama and French (1993) factors and a liquidity innovation factor.  The 

regression uses monthly data over the past five years (with 60 observations) on a rolling basis.  

We then form decile portfolios separately for NYSE/AMEX and NASDAQ stocks (ten portfolios 

for each sample) with prices between $5 and $1,000 based on their liquidity betas.  Portfolios are 

formed at the end of December of each year and rebalanced annually.  The full-sample portfolio 

illiquidity betas are then reassigned to individual stocks based on the portfolio to which the stock 

belongs at the end of each year. 

 GPIN: We follow Duarte, Hu, and Young (2020) and calculate the conditional 

probability of informed trading using the generalized PIN model daily for NYSE stocks from 

1993 to 2018.16  GPIN is then the monthly average of these probabilities.  We take the logistic 

transformation of GPIN, Ln[GPIN/(1−GPIN)], as our information risk variable. 

In Table A5 in the internet appendix, we present an expanded version of the correlation 

matrix in Table 2, which includes the three measures above.  The PIN measure and PS beta show 
                                                            
16 We thank the authors for providing code and data on https://edwinhu.github.io/pin/. 
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low correlations with other variables (they are mostly less than 0.06 in absolute terms).  AP beta 

is modestly positively correlated with ICC (0.050) but is also negatively correlated with the 

natural log of firm size (−0.269).  This underscores the importance of disentangling the effect of 

liquidity risk after controlling for firm size. 

Table 12 presents the regression results.  We continue to include the level of Amihud 

illiquidity as a control.  Consistent with Easley, Hvidkjaer, and O’Hara (2002), GPIN is 

positively priced in realized returns (t-statistic = 2.50), but there is no evidence that higher values 

of liquidity betas and GPIN lead to higher cost of capital.  Indeed, both AP beta and GPIN are 

negatively related to ICC, and AP beta significantly so.  Further, Ln(ILLIQ) continues to be 

significantly negatively related to ICC in the presence of these liquidity risk measures.  Overall, 

our results do not support the notion that firms should care about liquidity or information risk in 

setting their costs of capital for long-term projects.17 

We want to emphasize that we are not implying that liquidity and information risk are 

irrelevant to a typical investor.  Instead, we argue that given the arsenal of available measures, 

we are not able to uncover evidence that these measures should be of concern to firms in setting 

their long-term discount rates.18 

 

                                                            
17 In unreported tests, we also include the Roll (1984) measure as well as Kyle’s (1985) lambda (Glosten and Harris, 
1988; Brennan and Subrahmanyam, 1996).  We use a WRDS off-the-shelf variable (TSignSqrtDVol2) to measure 
lambda and the usual two times the square root of the sign-flipped daily serial covariance as the Roll measure.  We 
do not include these in Table 11 as the Roll (1984) measure is similar to the bid-ask spread, and Kyle’s (1985) 
lambda measures price impact, which is similar to the Amihud (2002) concept.  Further, the requirement in Roll 
(1984) that the serial covariance needs to be negative causes a large drop in sample size.  Consistent with the 
findings in Table 11, we find that neither the Roll (1984) measure nor the lambda are consistently positive 
determinants of ICC. 
18 Keloharju, Linnainmaa, and Nyberg (2021) show that long-term realized returns do not incorporate premia 
associated with a large number of “return anomalies” that emerge in short-term (monthly) realized returns.  We 
instead focus on the relation between illiquidity and ICC, where the latter is a proxy for the actual cost of capital for 
long-term corporate projects.  Our design sheds light on whether publicly traded corporations should account for 
illiquidity in setting their discount rates.   
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7. Difference-in-Differences (DiD) Around Brokerage Closures 

So far, our analysis focused on the cross-sectional relationship between Amihud 

illiquidity and the cost of capital.  In this section, we focus on the effects of changes in liquidity 

of individual stocks due to exogenous reasons.  For this experiment, we follow Kelly and 

Ljungqvist (2012) and construct a sample of stocks whose sell-side analyst coverage declined 

following brokerage closures or brokerage mergers that occurred between the first quarter of 

2000 and the first quarter of 2008.19  For each brokerage closure, we identify stocks that were 

covered by the broker before the closure ended the coverage.  For mergers, we identify stocks 

that had a sell-side-earnings estimate by both brokers in the quarter before the event but by only 

one of the two brokers in the quarter after the event.  This sample constitutes the sample of 

treated (not necessarily unique) stocks numbering 2,563.  For every treated stock, we choose five 

control stocks at random in the same size and book-to-market quintile as the treated stock in the 

quarter preceding the event; subject to the condition that the control firms were themselves not 

subject to coverage termination in the one year around the event. 

We calculate Ln(ILLIQ) and ICC for each treated stock in the month immediately before 

and the month immediately after the event.  We choose this window to avoid the confounding 

effects of any other exogenous firm-specific events that might affect a stock’s liquidity.  The 

window also allows us to compute changes in ICC based on the ICCs computed immediately 

before and immediately after the brokerage closure thus reflecting any changes in consensus 

earnings estimates resulting from the brokerage closures.  Thus, the window is likely to provide 

the cleanest test of the effect of brokerage closures on cost of capital.  We also average 

Ln(ILLIQ) and ICC across the five control stocks corresponding to each treated stock to obtain 

                                                            
19 We thank Feng Jiang for help in constructing these data. 
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one number for that control group (for the same one-month window). 

Table 13 reports the cross-sectional averages of the above statistics before and after the 

event for both treated and control firms as well as the double difference.  Since brokerage 

closures are clustered in time, multiple brokerages can stop covering a stock at the same time, so 

that the same stock can show up as a treated stock multiple times within a short time period.  To 

control for this clustering effect, we follow Kelly and Ljungqvist (2012) in calculating the 

standard error of the DiD difference with a block bootstrap simulation procedure with a block 

length 100 and 10,000 repetitions.  We report these statistics for the entire sample as well as for 

sub-samples grouped based on the number of sell-side analysts covering the treated firm in the 

month preceding the event. 

The results in Panel A of Table 13 show that Ln(ILLIQ) increases significantly (meaning 

that liquidity declines) following brokerage closures in the overall sample and in every sub-

sample by number of analysts.  Specifically, in the overall sample, Ln(ILLIQ) increases by six 

standard deviations while in the sub-samples it increases by three to seven standard deviations. 

These results confirm Kelly and Ljungqvist (2012). 

The point estimates of ICC, on the other hand, decline by ten basis points in the overall 

sample and in every sub-sample except the one with analyst coverage of 5 or less.  To put this 

finding in context, Kelly and Ljungqvist (2012) report that in the days after a stock loses 

coverage, its price drops on average by about 1.0% (adjusting for market movements).  

Similarly, we find that in our sample of 2,563 firms, prices decline by about 0.8% (net of control 

firm price changes) during the event month.  If consensus earnings estimates do not change 

appreciably from the month before to the month after the event, a decline in price should 

mechanically lead to an increase in ICC.  We do not see such increases but decreases instead.  
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These decreases, however, are not statistically significant.  Thus, the cost of capital does not 

increase with an increase in Amihud illiquidity following the exogenous decrease in analyst 

coverage.  Overall, the DiD results involving brokerage closures mirror our earlier findings that 

high illiquidity does not lead to higher costs of capital for firms. 

In Table A6 within the internet appendix, we provide the DiD results for market 

capitalization.  This is because market capitalization is negatively related to ICC in cross-

sectional regressions (Lee, Ng, and Swaminathan, 2009, and our Table 4), and might possibly be 

an (inverse) illiquidity proxy.  We find that while the point estimates of market capitalization 

shifts are negatively affected by the brokerage closures, the changes are economically modest 

(less than 2%), and statistically insignificant in all cases but one.  From Panel A of Table 13, 

however, the changes in illiquidity itself are consistently significant in every case.  These 

findings indicate that even if market capitalization is a proxy for illiquidity, it is, at best, a very 

noisy one.  Coupled with the observation that ICC is unaffected by the brokerage closures, it 

seems unlikely that the pricing of market capitalization in ICC reflects a premium for illiquidity. 

 

8. Why is there a Negative Illiquidity-ICC Relation in the Cross-Section? 

The result that illiquidity varies inversely with cost of capital estimates in the cross-

section (controlling for size) is quite puzzling.  Why is this the case?  We investigate this 

question by documenting various characteristics of the size/illiquidity-sorted portfolios in Table 

3.  We document values of these portfolios’ B/M, dollar volume, gross profitability, share 

turnover, asset growth, volatility, the past month’s return, past momentum return, and the past 

return computed over the interval (𝑡 − 35, 𝑡 − 12) as well as (𝑡 − 35, 𝑡).  The latter two returns 

capture the long-term reversals of De Bondt and Thaler (1985).  The characteristics appear in 



33 

Table 14. 

The robust pattern is that across all size groups, more illiquid stocks have lower B/M 

ratios and lower trading volume.  For example, the B/M for the smallest, highly illiquid firms is 

in fact 17% lower than that for the smallest, most liquid firms.  The dollar volume is one-ninth 

lower for the smallest, most illiquid firms relative to the most liquid counterparts.  At the same 

time, the illiquid firms have very high momentum.  The momentum return over the last year 

(skipping the most recent month) for the smallest, most illiquid firms is 26.26%, whereas it is 

−7.34% for the smallest, least illiquid firms.  However, the cumulative returns over the prior two 

years (𝑡 − 35 to 𝑡 − 12) exhibit the opposite pattern to momentum returns: highly illiquid stocks 

underperform the more liquid stocks.  The other size groups show similar characteristic rankings 

as that for the smallest size group.  Finally, the point estimate differentials for asset growth and 

profitability are not materially different across the various illiquidity-sorted groups, and illiquid 

firms are slightly less volatile than their liquid counterparts. 

While the patterns are somewhat complex and do not lend themselves to an easy 

interpretation, the results in Table 14 seem consistent with the theoretical work of Berk, Green, 

and Naik (1999).  These authors argue that low B/M firms (Panel B shows high ILLIQ firms have 

low B/M) are low risk going forward due to the fact that they have taken on low-risk projects in 

their recent past, as reflected in their increasingly high market value relative to book value.  This 

interpretation is consistent with the fact that such firms have extremely high momentum returns.  

Furthermore, low risk should mean lower disagreement, and thus, lower trading activity (Hong 

and Stein, 2007; Carlin, Longstaff, and Matoba, 2014), as we find in Panels D and F of Table 
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14.20  Going forward such low-risk firms should command a lower cost of capital, which is 

consistent with our findings.  Thus, illiquidity might imply an influence of B/M beyond just a 

linear control in regressions.  Whether this explanation is indeed correct may require further 

investigation. 

 

9. Summary and Concluding Remarks 

A large body of literature finds evidence that high illiquidity implies high monthly 

realized returns.  This finding is interpreted as supporting the notion that investors demand 

higher returns for more illiquid firms.  Using standard U.S. data, we test if illiquidity is related to 

estimates of firms’ costs of capital (ICC), which correspond to long-term internal rates of return 

(in excess of a benchmark 10-year Treasury yield) on expected cash flows.  We are unable to 

uncover cross-sectional evidence that illiquidity (as measured by Amihud, 2002) is positively 

related to costs of capital, after controlling for other known determinants of ICC.  This 

conclusion is robust to using different measures of ICC using both analyst- and regression-based 

earnings forecasts.  Further, at the aggregate level, illiquidity innovations do not help forecast 

ICC innovations (or vice versa).  A difference-in-differences analysis around exogenous 

brokerage closures shows a decrease in liquidity (as in Kelly and Ljungqvist, 2012) but no 

accompanying increase in ICC. 

Our evidence accords with Constantinides (1986), who indicates that agents with long 

horizons respond to illiquidity by scaling back their volume and frequency of trade, and therefore 

do not demand illiquidity premia.  On the other hand, our analysis does not rule out the 

possibility that illiquidity might be of concern to short-horizon investors and thus might 
                                                            
20 While low B/M could also mean excessive overconfident optimism (Daniel, Hirshleifer, and Subrahmanyam, 
2001), which also implies low returns going forward, it is not clear why this should imply lower trading activity 
relative to high B/M. 
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influence monthly returns; indeed, we do confirm that illiquidity positively forecasts monthly 

returns.  We also note that since market capitalization is inversely related to ICC, it is a candidate 

for a priced liquidity proxy.  But, we consider an arsenal of alternative, and more economically 

intuitive, proxies for liquidity, liquidity risk, and information risk, neither of which yield 

evidence of being priced in ICC. 

As a byproduct of our analysis, we provide evidence that, net of standard controls, cost of 

capital estimates are lower for more illiquid firms.  Our analyses suggest that illiquid firms tend 

to have lower trading activity and lower book-market ratios.  These findings support the view 

that such firms have low disagreement and are thus low risk in the sense of Berk, Green, and 

Naik (1999).  Their high market to book might reflect that they have taken on low-risk 

opportunities, and going forward, such low risk implies lower costs of capital.  These findings, 

however, likely need further attention in future work. 
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Appendix 

Details of the ICC Estimation 

 
We use a three-stage approach to forecasting earnings up to year 𝑡 + 𝑇. In the first stage, 

earnings forecast for year 𝑡 + 1 is based on median security analyst earnings forecasts, 𝐹𝑌1 and 

𝐹𝑌2, for the next two fiscal years where 𝐹𝑌1 > 0 and 𝐹𝑌2 > 0.  We use a weighted average of 

the 𝐹𝑌1 and 𝐹𝑌2 to construct a 12-month ahead earnings forecast 𝐹𝐸1 = 𝑤 × 𝐹𝑌1 + (1 − 𝑤) ×

𝐹𝑌2, where 𝑤 is the number of months to the next fiscal year-end divided by 12.  In the second 

stage, we compute the implied growth rate, 𝑔2 = 𝐹𝑌2 𝐹𝑌1⁄ − 1, and use it to forecast the two-

year-ahead earnings forecast, 𝐹𝐸2 = 𝐹𝐸1 × (1 + 𝑔2).  This ensures that the forecasts for the next 

two years are always 12 months and 24 months ahead from the current month.  The implied 

growth rate g2 is winsorized to be between 1% and 75%.  In the third stage, earnings from year 

𝑡 + 3 to year 𝑡 + 𝑇 + 1 are estimated by assuming that the year 𝑡 + 2 earnings growth rate 𝑔2 

mean-reverts exponentially to its steady-state value by year 𝑡 + 𝑇 + 2.  The steady-state growth 

rate in year 𝑡 + 𝑇 + 2 is assumed to be the long-run nominal GDP growth rate, 𝑔, which is 

computed as an expanding average of annual nominal GDP growth rates starting in the calendar 

year 1930 and ending in the prior calendar year.21  Thus, earnings growth rates and earnings 

forecasts for years 𝑡 + 3 to 𝑡 + 𝑇 + 1 (𝑘 = 3, … ,𝑇 + 1) are computed as follows: 

𝑔𝑡+𝑘 = 𝑔𝑡+𝑘−1 × exp[log(𝑔 𝑔2⁄ ) 𝑇⁄ ] 

 𝐹𝐸𝑡+𝑘 = 𝐹𝐸𝑡+𝑘−1 × (1 + 𝑔𝑡+𝑘). (A1) 

The exponential rate of mean-reversion is the same as linear interpolation in logs and provides a 

more rapid rate of mean reversion for very high growth rates.  This is consistent with the 

                                                            
21 For instance, the average used for the ICC calculations in calendar year 1977 is the arithmetic average of annual 
nominal GDP growth rates from 1930 to 1976, the average used for 1978 is the arithmetic average of annual 
nominal GDP growth rates from 1930 to 1977 and so on. 
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evidence in Nissim and Penman (2001) and Chan, Karceski, and Lakonishok (2003). 

We forecast plowback rates also using a two-stage approach.  In the first stage, plowback 

rate for year 𝑡 + 1 is estimated as one minus the most recent year’s dividend payout ratio.  The 

dividend payout ratio is calculated as the ratio of the most recent fiscal year dividends to the 

most recent fiscal year (positive) earnings.22  We exclude share repurchases and new equity 

issues due to the difficulty in forecasting their recurrence in future periods.23  We winsorize 

payout ratios to be between zero and one.  In the second stage, we assume that the plowback rate 

in year 𝑡 + 1, 𝑏1, reverts linearly to a steady-state value by year 𝑡 + 𝑇 + 1 computed from the 

sustainable growth rate formula which assumes that the product of the return on new investments 

and the plowback rate 𝑅𝑉𝐸 × 𝑏 is equal to the steady-state growth in earnings 𝑔.  Because 

competition will drive return on these investments down to the cost of equity, we further assume 

that in the steady state, 𝑅𝑉𝐸 (return on new investments) equals 𝑟𝑒.  Substituting 𝑅𝑉𝐸 with cost 

of equity 𝑟𝑒 in the sustainable growth rate formula gives us the steady-state value for the 

plowback rate, 𝑔 𝑟𝑒⁄ .  We compute the intermediate plowback rates from 𝑡 + 2 to 𝑡 + 𝑇 (𝑘 =

2, … ,𝑇) using linear interpolation: 

 𝑏𝑡+𝑘 = 𝑏𝑡+𝑘−1 − (𝑏1 − 𝑏) 𝑇⁄ .  (A2) 

The terminal value 𝑇𝑉 is the present value of a perpetuity equal to the year 𝑡 + 𝑇 + 1 

earnings forecast divided by the cost of equity: 24 

 𝑇𝑉𝑡+𝑇 = 𝐹𝐸𝑡+𝑇+1 𝑟𝑒⁄ , (A3) 

It is easy to show that the constant growth model for 𝑇𝑉 simplifies to Equation (A3) when 𝑅𝑉𝐸 
                                                            
22 If the fiscal year earnings are negative, then we scale dividends by median 𝐹𝑌1 earnings forecasts. 
23 To gauge the impact of share repurchases and new equity issuances, we re-estimate the payout ratio by 
incorporating share repurchases net of new equity issuances.  Our results are robust to ICC estimated using this 
alternate payout ratio. 
24 Note that the use of the no-growth perpetuity formula does not imply that earnings or cash flows do not grow after 
period 𝑡 + 𝑇.  Rather, it simply means that any new investments after year 𝑡 + 𝑇 will earn zero economic profits. In 
other words, any growth in earnings or cash flows after year 𝑇 is value irrelevant. 
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equals 𝑟𝑒.  Combining Equations (1), (2), and (A1) to (A3) provides the following empirically 

implementable finite horizon model: 

 
𝑃𝑡 = �

𝐹𝐸𝑡+𝑘 × (1 − 𝑏𝑡+𝑘)
(1 + 𝑟𝑒)𝑘

𝑇

𝑘=1

+
𝐹𝐸𝑡+𝑇+1
𝑟𝑒(1 + 𝑟𝑒)𝑇 . 

 
(A4) 

Following Li, Ng, and Swaminathan (2013), we use a 15-year horizon (𝑇 = 15) to implement 

the model in Equation (A4) and compute 𝑟𝑒 as the rate of return that equates the present value of 

free cash flows to the current stock price.25  The resulting 𝑟𝑒 is the firm-level ICC measure used 

in our empirical analysis.  We compute ICC for each month from January 1977 to December 

2018 for all firms with available positive fiscal year 1 and fiscal year 2 consensus earnings 

forecasts (𝐹𝑌1 > 0, 𝐹𝑌2 > 0) and the other data requirements described earlier.26 

  

                                                            
25 Lee, Ng, and Swaminathan (2009) and Li, Ng, and Swaminathan (2013) test the robustness of ICC estimates by 
using different values of 𝑇 (𝑇 = 10 or 𝑇 = 20) and report that their cross-sectional and time-series results are robust 
to these alternative time horizons. 
26 See also Balakrishnan, Shivakumar, and Taori (2021) who construct cost of equity (CoE) estimates directly from 
analysts’ CoE estimates which necessarily limits their cross-sectional sample to a few hundred firms per month on 
average.  We have also estimated alternate ICCs based on Easton (2004) and Ohlson and Juettner-Nauroth (2005). 
We discuss the results using these alternate ICCs in Section 3.2. 
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Figure 1: Average returns and ICC for portfolios sorted by size and illiquidity 
 
We triple sort portfolios in sequential order into quartiles as in Table 3.  The first and second sorts are on SIZE and the third sort is on ILLIQ.  
Variables are defined in Table 1.  The breakpoints for all quintiles are from NYSE stocks.  For each ILLIQ quartile, we average the four size 
quartiles of the second sort.  The figure then plots post-formation statistics on the resulting 4×4 SIZE and ILLIQ portfolios.  We show post-
formation returns (in excess of risk-free rate) two months after the formation period and post-formation ICC (in excess of the long-term 
government bond yield) one month after the formation period.  Excess returns are annualized.  The sample includes NYSE and AMEX stocks with 
prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ at the time of portfolio formation.  The sample period 
is October 1977 to November 2018. 
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Figure 2: Market-wide ICC and illiquisity 
 
We calculate market level ICC and illiquidity. mICC is the market implied risk premium (ICC – 10-year treasury yield) calculated as the value-
weighted average of individual stock level ICC.  mILLIQ is the linearly detrended logarithm of monthly market averages of individual stock level 
ILLIQ.  The stock sample includes NYSE and AMEX stocks with prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 
1% of ILLIQ.  The figure plots the time-series variation in mICC and mILLIQ.  The sample period is 1977 to 2018. 
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Figure 3: Impulse response functions for VAR using aggregate ICC and illiquidity 
 
This figure plots the impulse response function (IRF) for the VAR estimated in Table 9.  The top panel shows the IRF of mICC to shocks in mICC 
(in black) and shocks to mILLIQ (in red).  The bottom panel shows the IRF of mILLIQ to shocks in mICC (in black) and shocks to mILLIQ (in 
red).  The dotted lines plot the 95% confidence interval to IRFs.  We plot these IRFs for sixty months after the shock. 
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Table 1: Summary statistics 
 
ICC is computed based on the 15-year discounted cash-flow method (please see the text and the Appendix for more details).  We subtract the yield 
on 10-year treasuries to compute the implied premium.  The ICC in Panels A and B refer to this implied premium.  In Panel A, ILLIQ is the 
Amihud (2002) illiquidity calculated using one year of data (using a minimum of 200 days with available data) as the average of the ratio of 
absolute return to dollar volume (stock-days with negative prices or volume below 100 shares are deleted).  SIZE is the market capitalization in 
billions of dollars.  B/M is the ratio of book equity to market capitalization where book equity is calculated as in Fama and French (1993).  ). 
Return11 is the 11-month cumulative return skipping one month.  Beta is the market beta calculated using monthly data over the past 60 months 
(36 months minimum).  GP/AT is the ratio of gross profit to total assets as in Novy-Marx (2013).  AG is the percentage growth in total assets as in 
Cooper, Gulen, and Schill (2008).  We use Ln(1+AG) to reduce the skewness in AG.  All accounting variables are assumed to be known six 
months after the fiscal-year end.  We compute cross-sectional statistics (mean, standard deviation, skewness and percentiles) of each variable each 
month.  Panel A reports the time-series averages of these cross-sectional statistics.  Panel B reports year by year cross-sectional distribution of ICC 
as of June of each year (column N shows the number of stocks).  The sample includes NYSE and AMEX stocks with prices between $5 and 
$1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is 1977 to 2018. 
 

 Panel A: Summary statistics for various firm characteristics 

 ILLIQ SIZE Ln(ILLIQ) Ln(SIZE) Ln(B/M) Return11 Beta GP/AT Ln(1+AG) Return ICC 
5th percentile 0.001 82 −7.940 4.019 −1.966 −0.318 0.295 0.036 −0.128 −0.132 0.002 
Median 0.041 1,093 −4.697 6.545 −0.551 0.119 1.038 0.281 0.072 0.006 0.053 
Mean 0.195 3,940 −4.580 6.584 −0.630 0.179 1.088 0.323 0.102 0.012 0.073 
95th percentile 0.993 17,471 −0.774 9.281 0.469 0.847 2.077 0.785 0.450 0.172 0.218 
StdDev 0.397 8,775 2.172 1.598 0.777 0.426 0.550 0.253 0.224 0.102 0.069 
Skewness 4.858 5.092 0.221 0.109 −0.844 3.044 0.698 0.725 1.643 1.432 2.133 
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Panel B: Cross-sectional distribution of ICC by year 

 5% Median Mean 95% StdDev Skewness N 
1977 0.020 0.071 0.082 0.181 0.056 2.138 655 
1978 −0.007 0.049 0.060 0.169 0.057 2.034 774 
1979 0.006 0.062 0.071 0.158 0.064 3.748 922 
1980 −0.005 0.059 0.073 0.224 0.070 1.869 964 
1981 −0.023 0.043 0.066 0.243 0.097 5.362 1,093 
1982 −0.020 0.054 0.087 0.300 0.106 2.223 1,020 
1983 −0.018 0.054 0.082 0.277 0.095 1.906 1,092 
1984 −0.026 0.038 0.065 0.250 0.090 1.773 1,239 
1985 −0.018 0.037 0.062 0.242 0.078 1.482 1,159 
1986 −0.006 0.045 0.072 0.242 0.077 1.377 1,144 
1987 −0.011 0.044 0.064 0.203 0.068 1.392 1,139 
1988 −0.016 0.036 0.053 0.184 0.063 1.679 1,139 
1989 −0.010 0.036 0.053 0.181 0.063 2.110 1,165 
1990 −0.004 0.041 0.064 0.218 0.071 1.830 1,132 
1991 −0.005 0.045 0.072 0.240 0.078 1.526 1,109 
1992 0.004 0.056 0.081 0.246 0.075 1.314 1,144 
1993 0.009 0.054 0.074 0.218 0.065 1.621 1,272 
1994 0.001 0.043 0.063 0.206 0.062 1.630 1,374 
1995 0.012 0.052 0.069 0.191 0.058 1.922 1,427 
1996 0.001 0.042 0.057 0.180 0.055 1.729 1,506 
1997 −0.006 0.036 0.050 0.174 0.054 2.127 1,582 
1998 0.007 0.046 0.062 0.184 0.056 1.943 1,589 
1999 0.001 0.047 0.063 0.188 0.057 1.721 1,521 
2000 −0.004 0.056 0.070 0.198 0.064 2.113 1,325 
2001 0.000 0.047 0.065 0.212 0.062 1.674 1,192 
2002 0.009 0.050 0.074 0.231 0.066 1.595 1,153 
2003 0.013 0.057 0.073 0.203 0.058 1.696 1,183 
2004 0.003 0.043 0.060 0.184 0.056 1.950 1,238 
2005 0.015 0.050 0.066 0.180 0.053 2.264 1,253 
2006 0.004 0.045 0.061 0.179 0.056 2.477 1,261 
2007 0.002 0.041 0.056 0.170 0.051 1.907 1,234 
2008 0.011 0.056 0.074 0.214 0.063 2.200 1,133 
2009 0.006 0.066 0.088 0.252 0.075 1.603 986 
2010 0.023 0.075 0.095 0.238 0.066 1.566 1,071 
2011 0.024 0.074 0.092 0.227 0.063 1.695 1,112 
2012 0.041 0.090 0.106 0.236 0.061 1.633 1,114 
2013 0.025 0.067 0.082 0.190 0.055 2.040 1,110 
2014 0.022 0.064 0.079 0.201 0.053 1.700 1,131 
2015 0.019 0.061 0.074 0.180 0.051 1.801 1,087 
2016 0.033 0.074 0.088 0.200 0.054 2.132 1,006 
2017 0.024 0.060 0.078 0.204 0.058 2.160 1,006 
2018 0.020 0.060 0.076 0.195 0.055 1.969 1,031 
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Table 2: Cross-sectional correlations among returns, ICC, illiquidity, and firm characteristics 
 
This table provides time-series averages of cross-sectional correlations among return, ICC, illiquidity, and various other firm characteristics. 
Variables are defined in Table 1.  The upper part of the matrix (in italics) contains rank correlations.  The lower part of the matrix contains 
correlations in levels.  The sample includes NYSE and AMEX stocks with prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or 
bottom 1% of ILLIQ.  The sample period is 1977 to 2018. 
 
  ILLIQ SIZE Ln(ILLIQ) Ln(SIZE) Ln(B/M) Return11 Beta GP/AT Ln(1+AG) Return ICC 
ILLIQ  −0.943 1.000 −0.943 0.270 −0.013 0.036 0.065 −0.074 0.007 0.195 
SIZE −0.175  −0.943 1.000 −0.283 0.097 −0.084 −0.088 0.068 0.043 −0.242 
Ln(ILLIQ) 0.632 −0.586  −0.943 0.270 −0.013 0.036 0.065 −0.074 0.007 0.195 
Ln(SIZE) −0.538 0.674 −0.937  −0.283 0.097 −0.084 −0.088 0.068 0.043 −0.242 
Ln(B/M) 0.176 −0.155 0.250 −0.258  −0.121 −0.089 −0.340 −0.218 0.015 0.202 
Return11 0.047 0.011 0.047 0.034 −0.117  −0.021 0.008 −0.058 0.004 −0.162 
Beta −0.056 −0.092 0.025 −0.084 −0.089 0.015  0.101 0.051 −0.004 0.193 
GP/AT 0.023 −0.022 0.047 −0.069 −0.284 0.017 0.061  0.015 0.007 −0.054 
Ln(1+AG) −0.058 0.009 −0.054 0.038 −0.149 −0.063 0.064 −0.005  −0.012 −0.061 
Return 0.039 0.005 0.041 0.014 0.027 0.002 0.010 0.005 −0.016  −0.046 
ICC 0.138 −0.128 0.207 −0.245 0.197 −0.119 0.165 −0.075 −0.033 −0.035  
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Table 3: Average returns and ICC for portfolios sorted by size and illiquidity 
 
We triple sort portfolios in sequential order into quartiles.  The first and second sorts are on SIZE and the 
third sort is on ILLIQ.  Variables are defined in Table 1.  The breakpoints for all quintiles are from only 
NYSE stocks.  For each ILLIQ quartile, we average the four size quartiles of the second sort.  The table 
then reports post-formation statistics on the resulting 4×4 SIZE and ILLIQ portfolios.  We calculate post-
formation returns (in excess of the risk-free rate) two months after the formation period and post-
formation ICC (in excess of the long-term government bond yield) one month after the formation period.  
Excess returns are annualized in Panel A.  All coefficients are multiplied by 100.  T-statistics in 
parentheses are the standard ones for realized returns and calculated using the Newey and West (1987) 
correction with 36 lags for ICC.  The sample includes NYSE and AMEX stocks with prices between $5 
and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ at the time of portfolio 
formation.  The sample period is October 1977 to November 2018. 
 
 ILLIQ 
SIZE Low Q2 Q3 High High − Low 

Panel A: Post-formation Returns 
Small 5.56 10.29 11.49 12.12 6.56 
 (1.49) (3.19) (3.87) (4.33) (3.83) 
Q2 8.77 11.06 11.42 12.06 3.29 
 (2.48) (3.73) (4.01) (4.43) (1.99) 
Q3 8.25 10.84 9.56 9.81 1.56 
 (2.68) (4.14) (3.78) (3.96) (1.09) 
Big 7.73 9.09 8.38 7.93 0.20 
 (3.05) (3.98) (3.61) (3.24) (0.19) 
Big − Small 2.17 −1.20 −3.12 −4.19 ― 
 (1.01) (−0.64) (−1.78) (−2.59)  

Panel B: Post-formation ICC 
Small 10.94 10.32 9.95 9.96 −0.98 
 (39.62) (39.40) (38.24) (37.93) (−3.39) 
Q2 8.64 7.65 7.07 7.06 −1.57 
 (40.22) (32.17) (29.42) (26.60) (−6.91) 
Q3 7.79 6.74 6.08 5.50 −2.29 
 (27.36) (25.13) (22.71) (23.79) (−9.13) 
Big 6.15 5.71 5.64 5.19 −0.97 
 (24.96) (20.65) (18.81) (13.99) (−3.77) 
Big − Small −4.79 −4.61 −4.32 −4.78 ― 
 (−19.19) (−24.15) (−20.96) (−15.99)  
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Table 4: Fama-MacBeth regressions for realized returns and ICC 
 
This table reports results of Fama-MacBeth cross-sectional regressions for realized returns (in excess of the risk-free rate) and ICC (in excess of 
the yield on long-term government bonds) on illiquidity and various firm characteristics.  Variables are defined in Table 1.  Panel A includes the 
variables in Amihud and Noh (2021) plus market beta, while Panel B adds two more control variables.  Each panel has three specifications.  
Ln(ILLIQ), Ln(SIZE), and Beta are lagged by two months in return regressions and by one month in ICC regressions.  Return11 is lagged by two 
months and Return1 is lagged by one month in all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of previous year of the 
current month.  All coefficients are multiplied by 100.  T-statistics in parentheses are the standard ones for return regressions and calculated using 
the Newey and West (1987) correction with 36 lags for ICC regressions.  The sample includes NYSE and AMEX stocks with prices between $5 
and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is indicated in each column. 
 
 Specification (1)  Specification (2)  Specification (3) 
 Return Return ICC  Return Return ICC  Return Return ICC 
 1955-2016 1977-2018 1977-2018  1955-2016 1977-2018 1977-2018  1955-2016 1977-2018 1977-2018 
 Panel A: Without additional controls 
Constant 0.851 0.816 8.513  1.018 0.957 11.252  0.609 0.694 12.503 
 (6.19) (4.62) (21.48)  (4.83) (3.69) (30.24)  (2.31) (2.16) (17.97) 
Ln(ILLIQ) 0.054 0.035 0.495  ― ― ―  0.113 0.062 −0.285 
 (2.61) (1.60) (15.29)      (3.36) (1.66) (−2.28) 
Ln(SIZE) ― ― ―  −0.051 −0.041 −0.750  0.070 0.039 −1.101 
     (−1.87) (−1.32) (−14.72)  (1.44) (0.67) (−6.11) 
Ln(B/M) 0.169 0.113 1.893  0.170 0.114 1.802  0.169 0.112 1.767 
 (3.91) (2.45) (5.39)  (3.92) (2.44) (5.26)  (3.91) (2.40) (5.23) 
Return11 0.892 0.585 −2.324  0.890 0.590 −2.111  0.855 0.565 −2.042 
 (6.73) (3.82) (−7.29)  (6.77) (3.83) (−6.60)  (6.57) (3.76) (−6.54) 
Return1 −3.722 −2.598 −5.820  −3.821 −2.621 −5.168  −3.846 −2.634 −4.850 
 (−11.33) (−6.65) (−13.90)  (−11.71) (−6.75) (−12.54)  (−11.87) (−6.82) (−12.20) 
Beta −0.034 0.012 2.293  −0.047 0.002 2.114  −0.007 0.016 1.990 
 (−0.32) (0.09) (9.44)  (−0.46) (0.01) (8.83)  (−0.07) (0.13) (7.84) 
#stocks 1,257 1,345 1,038  1,260 1,348 1,038  1,257 1,345 1,038 
adj-R2 6.4% 5.6% 13.3%  6.6% 5.7% 13.8%  6.9% 6.0% 14.2% 
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Table 4, contd. 
 
 Specification (1)  Specification (2)  Specification (3) 
 Return Return ICC  Return Return ICC  Return Return ICC 
 1955-2016 1977-2018 1977-2018  1955-2016 1977-2018 1977-2018  1955-2016 1977-2018 1977-2018 
 Panel B: With additional controls 
Constant 0.703 0.722 8.804  0.888 0.832 11.763  0.559 0.565 13.189 
 (4.98) (4.06) (19.63)  (4.17) (3.23) (27.09)  (2.09) (1.78) (20.02) 
Ln(ILLIQ) 0.052 0.030 0.504  ― ― ―  0.090 0.064 −0.346 
 (2.54) (1.40) (13.69)      (2.61) (1.75) (−3.00) 
Ln(SIZE) ― ― ―  −0.054 −0.033 −0.779  0.046 0.049 −1.203 
     (−1.99) (−1.09) (−14.33)  (0.93) (0.86) (−7.29) 
Ln(B/M) 0.206 0.139 1.731  0.195 0.139 1.594  0.193 0.137 1.559 
 (4.66) (3.02) (4.92)  (4.38) (3.02) (4.64)  (4.31) (2.98) (4.61) 
Return11 0.966 0.570 −2.420  0.963 0.570 −2.218  0.934 0.546 −2.119 
 (7.07) (3.75) (−7.17)  (7.09) (3.73) (−6.57)  (6.93) (3.65) (−6.36) 
Return1 −3.863 −2.734 −5.811  −3.975 −2.758 −5.143  −4.014 −2.768 −4.754 
 (−11.41) (−7.05) (−13.96)  (−11.77) (−7.16) (−12.38)  (−11.97) (−7.22) (−11.74) 
Beta 0.044 0.027 2.322  0.031 0.019 2.144  0.061 0.034 2.011 
 (0.42) (0.21) (9.17)  (0.30) (0.15) (8.54)  (0.63) (0.28) (7.55) 
GP/AT 0.350 0.356 −0.924  0.352 0.361 −1.168  0.341 0.365 −1.165 
 (3.35) (2.74) (−3.26)  (3.37) (2.81) (−4.18)  (3.31) (2.85) (−4.14) 
Ln(1+AG) −0.499 −0.367 −0.772  −0.552 −0.379 −0.892  −0.530 −0.374 −0.924 
 (−5.21) (−3.74) (−1.90)  (−5.82) (−3.89) (−2.25)  (−5.67) (−3.87) (−2.43) 
#stocks 1,158 1,337 1,035  1,160 1,339 1,035  1,158 1,337 1,035 
adj-R2 7.1% 6.1% 13.7%  7.3% 6.2% 14.4%  7.6% 6.5% 14.7% 
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Table 5: Fama-MacBeth regressions for realized returns and ICC using the turnover-based version 
of the Amihud illiquidity measure  

 
This table reports results of Fama-MacBeth cross-sectional regressions for realized returns (in excess of 
the risk-free rate) and ICC (in excess of the yield on long-term government bonds) on illiquidity and 
various firm characteristics.  We replace dollar volume-based ILLIQ with turnover-based ILLIQTurn.  
Other variables are defined in Table 1.  Ln(ILLIQTurn), Ln(SIZE), and Beta are lagged by two months in 
return regressions and by one month in ICC regressions.  Return11 is lagged by two months and Return1 
is lagged by one month in all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of 
previous year of the current month.  All coefficients are multiplied by 100.  T-statistics in parentheses are 
the standard ones for return regressions and calculated using the Newey and West (1987) correction with 
36 lags for ICC regressions.  The sample includes NYSE and AMEX stocks with prices between $5 and 
$1,000 and whose ILLIQTurn is not in the top 1% or bottom 1% of ILLIQTurn.  The sample period is 
indicated in each column. 
 
 Return Return ICC 
 1955-2016 1977-2018 1977-2018 
Constant −0.216 0.053 14.011 
 (−0.46) (0.10) (10.85) 
Ln(ILLIQTurn) 0.106 0.073 −0.243 
 (2.91) (1.86) (−2.14) 
Ln(SIZE) −0.043 −0.016 −0.749 
 (−1.62) (−0.52) (−10.45) 
Ln(B/M) 0.185 0.129 1.623 
 (4.09) (2.76) (4.61) 
Return11 0.977 0.544 −2.284 
 (7.21) (3.63) (−6.82) 
Return1 −4.180 −2.923 −5.089 
 (−12.53) (−7.69) (−12.21) 
Beta 0.075 0.042 2.001 
 (0.78) (0.34) (7.50) 
GP/AT 0.326 0.348 −1.051 
 (3.16) (2.72) (−3.56) 
Ln(1+AG) −0.535 −0.373 −0.941 
 (−5.82) (−3.98) (−2.47) 
#stocks 1,161 1,340 1,036 
adj-R2 7.6% 6.4% 14.6% 
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Table 6: Fama-MacBeth regressions for realized returns and ICC by size 
 
This table shows the same regressions as in specification (3) of Table 4 but separately for Large and 
Small stocks.  Stocks above the NYSE median market capitalization are defined as Large and the rest of 
the stocks are defined as Small.  Ln(ILLIQ), Ln(SIZE), and Beta are lagged by two months in return 
regressions and by one month in ICC regressions.  Return11 is lagged by two months and Return1 is 
lagged by one month in all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of 
previous year of the current month.  All coefficients are multiplied by 100.  T-statistics in parentheses are 
the standard ones for return regressions and calculated using the Newey and West (1987) correction with 
36 lags for ICC regressions.  The sample includes NYSE and AMEX stocks with prices between $5 and 
$1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is indicated in 
each column. 
 
 Return (1955-2016)  Return (1977-2018)  ICC (1977-2018) 
 Large Small  Large Small  Large Small 
 Panel A: Without controls 
Constant 1.213 −0.076  1.415 −0.251  7.851 18.533 
 (4.38) (−0.26)  (4.12) (−0.70)  (9.53) (15.59) 
Ln(ILLIQ) 0.003 0.206  −0.040 0.153  −0.834 −0.411 
 (0.09) (5.11)  (−0.93) (3.60)  (−8.03) (−2.76) 
Ln(SIZE) −0.079 0.237  −0.119 0.252  −1.074 −2.159 
 (−1.55) (3.90)  (−1.89) (3.46)  (−8.85) (−8.35) 
Ln(B/M) 0.136 0.176  0.090 0.113  1.865 1.606 
 (2.83) (3.63)  (1.71) (2.07)  (4.99) (5.40) 
Return11 0.848 0.865  0.458 0.626  −1.338 −2.411 
 (5.22) (6.79)  (2.30) (4.53)  (−4.14) (−6.67) 
Return1 −3.949 −3.758  −2.591 −2.478  −3.956 −4.863 
 (−9.88) (−11.16)  (−5.11) (−6.47)  (−9.23) (−9.67) 
Beta −0.065 0.035  −0.045 0.064  2.284 1.740 
 (−0.55) (0.40)  (−0.30) (0.59)  (7.29) (7.73) 
#stocks 610 648  654 691  607 433 
adj-R2 9.4% 5.0%  9.0% 4.1%  12.8% 10.9% 
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Table 6, contd. 
 
 Return (1955-2016)  Return (1977-2018)  ICC (1977-2018) 
 Large Small  Large Small  Large Small 
 Panel B: With controls 
Constant 1.134 −0.187  1.324 −0.452  8.408 19.573 
 (4.03) (−0.58)  (3.86) (−1.29)  (10.91) (16.00) 
Ln(ILLIQ) −0.019 0.190  −0.028 0.158  −0.938 −0.491 
 (−0.50) (4.34)  (−0.65) (3.74)  (−8.93) (−3.32) 
Ln(SIZE) −0.099 0.234  −0.107 0.276  −1.203 −2.322 
 (−1.91) (3.55)  (−1.73) (3.85)  (−11.31) (−8.80) 
Ln(B/M) 0.187 0.184  0.138 0.132  1.619 1.399 
 (3.68) (3.54)  (2.62) (2.38)  (4.11) (4.75) 
Return11 0.930 0.835  0.469 0.594  −1.395 −2.480 
 (5.59) (6.12)  (2.36) (4.33)  (−4.13) (−6.52) 
Return1 −4.162 −3.822  −2.688 −2.649  −3.808 −4.731 
 (−10.39) (−10.56)  (−5.37) (−6.97)  (−8.60) (−9.17) 
Beta 0.006 0.094  −0.013 0.074  2.316 1.743 
 (0.05) (0.99)  (−0.09) (0.69)  (7.07) (7.28) 
GP/AT 0.424 0.244  0.374 0.406  −1.367 −1.385 
 (3.27) (2.10)  (2.33) (2.99)  (−3.57) (−3.81) 
Ln(1+AG) −0.463 −0.599  −0.357 −0.369  −0.964 −0.887 
 (−3.73) (−4.99)  (−2.86) (−3.04)  (−2.24) (−2.33) 
#stocks 566 648  652 685  606 431 
adj-R2 10.3% 5.3%  9.9% 4.5%  13.7% 11.6% 
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Table 7: Fama-MacBeth regressions for realized returns and ICC, using components of illiquidity 
 
This table reports results of Fama-MacBeth cross-sectional regressions for realized returns (in excess of the risk-free rate) and ICC (in excess of 
the yield on long-term government bonds) on components of illiquidity and various firm characteristics similar to those in Table 4.  Variables are 
defined in Table 1.  Ln(|R|), Ln(1/DVOL), DIF, Ln(SIZE), and Beta are lagged by two months in return regressions and by one month in ICC 
regressions.  Return11 is lagged by two months and Return1 is lagged by one month in all regressions.  Ln(B/M) is calculated at the end of 
previous year of the current month.  Stocks above the NYSE median market capitalization are defined as Large and the rest of the stocks are 
defined as Small. All coefficients are multiplied by 100.  T-statistics in parentheses are the standard ones for return regressions and calculated 
using the Newey and West (1987) correction with 36 lags for ICC regressions.  The sample includes NYSE and AMEX stocks with prices between 
$5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is indicated in each column. 
 
 Return (1955-2016)  Return (1977-2018)  ICC (1977-2018) 
 All Large Small  All Large Small  All Large Small 
Constant 10.043 7.486 10.327  5.974 7.732 2.515  9.606 13.392 39.718 
 (3.14) (1.60) (2.87)  (1.28) (1.16) (0.50)  (1.35) (0.94) (4.72) 
Ln(|R|) −0.388 −0.227 −0.507  −0.547 −0.352 −0.663  5.200 4.300 5.200 
 (−2.91) (−1.55) (−3.34)  (−3.16) (−1.77) (−3.51)  (14.31) (10.43) (11.89) 
Ln(1/DVOL) 0.117 0.001 0.194  0.064 −0.042 0.130  −0.197 −0.704 −0.219 
 (3.75) (0.04) (5.10)  (1.82) (−1.05) (3.26)  (−1.68) (−7.12) (−1.48) 
DIF 0.815 0.521 0.925  0.547 0.548 0.403  −1.774 −1.192 0.031 
 (3.63) (1.56) (3.73)  (1.70) (1.18) (1.15)  (−3.45) (−1.16) (0.05) 
Ln(SIZE) 0.006 −0.092 0.096  −0.026 −0.132 0.105  −0.560 −0.724 −1.379 
 (0.15) (−2.00) (1.92)  (−0.53) (−2.28) (1.66)  (−3.32) (−6.03) (−5.01) 
Ln(B/M) 0.142 0.128 0.137  0.088 0.086 0.074  2.035 2.106 1.856 
 (3.45) (2.75) (2.95)  (1.97) (1.68) (1.40)  (5.59) (5.11) (5.90) 
Retun11 0.936 0.888 0.985  0.646 0.510 0.736  −2.410 −1.633 −2.782 
 (7.55) (5.74) (7.91)  (4.52) (2.69) (5.45)  (−9.06) (−6.29) (−8.28) 
Return1 −3.971 −4.097 −3.927  −2.665 −2.687 −2.537  −5.529 −4.561 −5.648 
 (−12.62) (−10.64) (−11.89)  (−7.23) (−5.60) (−6.86)  (−14.43) (−11.70) (−10.85) 
Beta 0.137 0.003 0.209  0.185 0.044 0.259  0.232 0.464 0.180 
 (1.85) (0.03) (3.00)  (2.02) (0.38) (3.08)  (1.68) (2.68) (1.07) 
#stocks 1,257 610 648  1,345 654 691  1,038 607 433 
adj-R2 8.0% 10.9% 6.0%  7.2% 10.7% 5.2%  18.2% 17.1% 14.3% 
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Table 8: Market excess return, market ICC, and market illiquidity 
 
This table reports results of time-series regressions for excess market returns and aggregate ICC on 
innovations to market illiquidity and its components.  dmILLIQ , dm|R|, and dm1/DVOL are shocks to the 
time-series mILLIQ, m|R|, and m1/DVOL, the (logarithm of) monthly market averages of, respectively, 
ILLIQ, |R|, and 1/DVOL for individual stocks.  The stock sample includes NYSE and AMEX stocks with 
prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The average 
across stocks is value-weighted using market capitalization at the end of the preceding month.  The 
shocks in each of these series indicated by the prefix “d” are calculated by estimating an AR(2) model 
over a rolling window of 60 months ending in month 𝑡 (the models for mILLIQ and m1/DVOL also 
include a time trend) and setting the shock in month 𝑡 + 1 as the difference between the actual value of 
the series and its predicted value, using the estimated slope coefficients from the preceding 60-month 
window.  We define dmDIF = dmILLIQ − (dm|R|+dm1/DVOL).  T-statistics in return regressions are 
based on the White correction for heteroskedasticity while those in ICC regressions are based on the 
Newey and West (1987) correction with 36 lags.  The sample period is 1955 to 2016 for return 
regressions and 1977 to 2018 for ICC regressions. 
 

 Market excess return  Market ICC – 10-year yield 
dmILLIQ −0.120 — 

 
−0.012 — 

 (−4.01)   (−0.89)  
dm1/DVOL — −0.076 

 
— 0.001 

  (−2.14)   (0.24) 
dm|R| — −0.450 

 
— −0.035 

  (−4.01)   (−1.11) 
dmDIF — −0.084 

 
— −0.045 

  (−1.24)   (−1.68) 
adj-R2 2.5% 5.6%  0.0% 0.5% 
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Table 9: VAR for market ICC and market illiquidity 
 
This table reports results of a VAR on market ICC and market illiquidity.  mICC is the market implied 
risk premium (ICC − 10-year treasury yield) calculated as the value-weighted average of individual stock 
level ICC.  mILLIQ is the linearly detrended logarithm of monthly market averages of the individual stock 
level ILLIQ.  The stock sample includes NYSE and AMEX stocks with prices between $5 and $1,000 and 
whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The lag length in VAR is chosen using the 
Akaike information criterion.  The table reports the coefficients and t-statistics in parentheses below the 
coefficients.  The last row of the table reports the contemporaneous correlation between the residuals and 
its p-value.  The sample period is 1977 to 2018. 
 

 Dependent variable 
 mICC(𝑡) mILLIQ(𝑡) 
Constant 0.004 −0.009 
 (4.74) (−0.80) 
mICC(𝑡 − 1) 0.926 0.157 
 (60.07) (0.81) 
mILLIQ(𝑡 − 1) 0.001 0.965 
 (1.33) (74.23) 
adj-R2 87.3% 93.6% 
Correlation in residuals 3.1% (p-value = 0.49) 
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Table 10: Fama-MacBeth regressions of realized returns and ICC using NASDAQ stocks 
 
This table shows the same regressions as in specification (3) of Table 4 and Table 7 but for NASDAQ 
stocks, and the combined sample of NYSE, AMEX, and NASDAQ stocks.  Ln(ILLIQ), Ln(|R|), 
Ln(1/DVOL), DIF, Ln(SIZE), and Beta are lagged by two months in the return regressions and by one 
month in the ICC regressions.  Return11 is lagged by two months and Return1 is lagged by one month in 
all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of previous year of the current 
month.  All coefficients are multiplied by 100.  T-statistics in parentheses are the standard ones for return 
regressions and calculated using the Newey and West (1987) correction with 36 lags for ICC regressions.  
The sample includes stocks with prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or 
bottom 1% of ILLIQ.  The sample period is 1983 to 2018 for the sample of NASDAQ stocks and 1977 to 
2018 for the sample of all stocks. 
 
 NASDAQ stocks  NYSE, AMEX, and NASDAQ stocks 
 Specification 1  Specification 2  Specification 1  Specification 2 
 Return ICC  Return ICC  Return ICC  Return ICC 
Constant −0.319 16.897  10.577 9.860  0.250 14.208  8.854 −0.645 
 (−0.76) (20.82)  (2.63) (1.41)  (0.76) (20.32)  (2.70) (−0.12) 
Ln(ILLIQ) 0.119 −0.403  ― ―  0.117 −0.452  ― ― 
 (2.53) (−3.82)     (3.50) (−3.94)    
Ln(|R|) ― ―  −0.485 4.481  ― ―  −0.413 4.524 
    (−2.28) (17.23)     (−2.45) (13.43) 
Ln(1/DVOL) ― ―  0.082 −0.243  ― ―  0.091 −0.315 
    (1.88) (−2.01)     (2.81) (−2.44) 
DIF ― ―  0.900 −1.670  ― ―  0.732 −2.375 
    (3.15) (−3.47)     (3.13) (−5.89) 
Ln(SIZE) 0.273 −1.914  0.124 −1.085  0.137 −1.432  0.030 −0.759 
 (3.59) (−9.03)  (2.06) (−6.21)  (2.41) (−7.90)  (0.67) (−4.07) 
Ln(B/M) 0.254 0.833  0.181 1.258  0.192 1.535  0.133 2.007 
 (4.24) (6.50)  (3.53) (7.18)  (3.88) (4.76)  (2.90) (5.85) 
Return11 0.626 −1.372  0.684 −1.696  0.621 −1.826  0.714 −2.116 
 (5.42) (−5.25)  (6.20) (−8.25)  (5.56) (−5.35)  (6.65) (−7.58) 
Return1 −3.024 −3.207  −2.977 −4.135  −3.205 −4.223  −3.100 −5.029 
 (−8.50) (−11.91)  (−8.58) (−14.61)  (−9.69) (−10.01)  (−9.65) (−12.72) 
Beta 0.048 1.319  0.151 0.350  0.081 1.710  0.179 0.268 
 (0.41) (7.87)  (1.75) (2.18)  (0.70) (7.32)  (2.15) (1.92) 
GP/AT 0.605 −0.559  ― ―  0.527 −0.695  ― ― 
 (4.43) (−1.45)     (4.71) (−2.66)    
Ln(1+AG) −0.560 0.348  ― ―  −0.465 −0.491  ― ― 
 (−5.45) (1.77)     (−5.38) (−1.52)    
#stocks 1,164 824  1,177 830  2,305 1,714  2,324 1,723 
adj-R2 5.2% 15.5%  5.7% 18.4%  5.9% 14.1%  6.4% 17.1% 
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Table 11: Fama-MacBeth regressions for realized returns and ICC, using alternative proxies of 
illiquidity 

 
This table reports results of Fama-MacBeth cross-sectional regressions for realized returns (in excess of 
the risk-free rate) and ICC (in excess of the yield on long-term government bonds) on alternative proxies 
of illiquidity (XILLIQ) and various firm characteristics.  LOT is the Lesmond, Ogden, and Trzcinka 
(1999) proportion of zero return days in a month.  PS is the Pástor and Stambaugh (2003) measure of 
illiquidity.  Ln(Spread) is the logarithm of the quoted bid-ask spread.  All other variables are defined in 
Table 1.  XILLIQ, Ln(SIZE), and Beta are lagged by two months in return regressions and by one month 
in ICC regressions.  Return11 is lagged by two months and Return1 is lagged by one month in all 
regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of previous year of the current 
month.  All coefficients are multiplied by 100.  T-statistics in parentheses are the standard ones for return 
regressions and calculated using the Newey and West (1987) correction with 36 lags for ICC regressions.  
The sample consists of NYSE, AMEX, and NASDAQ stocks with prices between $5 and $1,000 and 
whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is October 1977 to 
November 2018 (PS is available for NASDAQ stocks only from 1983 onwards). 
 
 XILLIQ =Ln(1+ LOT)  XILLIQ = PS  XILLIQ = Ln(Spread) 
 Return ICC  Return ICC  Return ICC 
Constant 0.746 12.114  0.818 11.912  0.617 11.562 
 (2.70) (37.22)  (3.30) (33.59)  (2.34) (30.73) 
XILLIQ 0.411 1.131  −0.001 0.003  −0.084 −0.417 
 (1.04) (1.29)  (−0.38) (1.25)  (−1.76) (−2.16) 
Ln(SIZE) −0.016 −0.846  −0.023 −0.832  −0.003 −0.919 
 (−0.48) (−16.88)  (−0.72) (−17.43)  (−0.10) (−25.92) 
Ln(B/M) 0.193 1.587  0.196 1.579  0.189 1.565 
 (3.96) (4.78)  (3.93) (4.81)  (3.91) (4.56) 
Return11 0.676 −1.986  0.677 −1.972  0.687 −1.928 
 (6.05) (−5.77)  (6.01) (−5.78)  (6.23) (−5.40) 
Return1 −3.195 −4.790  −3.190 −4.753  −3.224 −4.596 
 (−9.66) (−11.34)  (−9.59) (−11.26)  (−9.77) (−8.93) 
Beta 0.056 1.891  0.054 1.913  0.053 1.759 
 (0.47) (8.52)  (0.44) (8.35)  (0.46) (7.41) 
GP/AT 0.498 −0.643  0.496 −0.634  0.492 −0.726 
 (4.38) (−2.38)  (4.37) (−2.33)  (4.36) (−2.79) 
Ln(1+AG) −0.483 −0.410  −0.484 −0.405  −0.478 −0.444 
 (−5.55) (−1.21)  (−5.53) (−1.18)  (−5.47) (−1.36) 
#stocks 2,313 1,714  2,313 1,714  2,310 1,711 
adj-R2 5.7% 13.6%  5.6% 13.6%  5.8% 14.2% 
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Table 12: Fama-MacBeth regressions of realized returns and ICC, using liquidity risk and 
information risk Proxies 

 
This table reports results of Fama-MacBeth cross-sectional regressions for realized returns (in excess of 
the risk-free rate) and ICC (in excess of the yield on long-term government bonds) on illiquidity, various 
firm characteristics, and proxies of liquidity risk.  AP Beta is the liquidity beta calculated as in Acharaya 
and Pedersen (2005), PS Beta is the liquidity beta is estimated as in Pástor and Stambaugh (2003), and 
GPIN is the generalized PIN calculated as in Duarte, Hu, and Young (2020).  Please see the text for 
further details.  All other variables are defined in Table 1.  Ln(ILLIQ), Ln(SIZE), Beta, and liquidity betas 
are lagged by two months in return regressions and by one month in ICC regressions.  Return11 is lagged 
by two months and Return1 is lagged by one month in all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) 
are calculated at the end of previous year of the current month.  All coefficients are multiplied by 100.  T-
statistics in parentheses are the standard ones for return regressions and calculated using the Newey and 
West (1987) correction with 36 lags for ICC regressions.  The PS Beta sample includes NYSE, AMEX, 
and NASDAQ stocks with prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 
1% of ILLIQ.  The sample for AP Beta includes only NYSE and AMEX stocks, and the sample for GPIN 
includes only NYSE stocks.  The sample period is October 1977 to November 2018 for regressions using 
AP Beta and PS Beta and January 1993 to November 2018 for regressions using GPIN. 
 
 LiqRisk = AP Beta  LiqRisk = PS Beta  InfRisk = Ln[GPIN/(1−GPIN)]  
 Return ICC  Return ICC  Return ICC  
Constant −0.011 23.984  0.384 13.812  1.000 12.038  
 (−0.02) (18.35)  (1.21) (20.42)  (2.32) (24.34)  
Ln(ILLIQ) 0.089 −0.530  0.103 −0.456  0.049 −0.332  
 (2.31) (−5.07)  (3.04) (−4.13)  (0.81) (−3.06)  
Ln(SIZE) 0.084 −1.700  0.106 −1.392  −0.006 −1.007  
 (1.40) (−11.14)  (1.88) (−8.17)  (−0.07) (−7.71)  
Ln(B/M) 0.140 1.514  0.168 1.656  0.060 1.105  
 (3.06) (4.41)  (3.45) (5.03)  (0.96) (4.86)  
Return11 0.507 −2.134  0.597 −2.064  0.134 −1.702  
 (3.24) (−6.35)  (4.89) (−6.07)  (0.53) (−8.32)  
Return1 −2.868 −4.573  −3.477 −4.547  −1.937 −3.993  
 (−7.39) (−10.32)  (−9.87) (−11.29)  (−3.57) (−13.69)  
Beta 0.039 2.063  0.075 1.856  0.093 1.908  
 (0.32) (7.57)  (0.62) (6.78)  (0.60) (12.23)  
GP/AT 0.379 −1.349  0.475 −0.616  0.098 −0.941  
 (2.94) (−4.52)  (4.12) (−2.43)  (0.49) (−2.85)  
Ln(1+AG) −0.341 −0.895  −0.297 −0.631  −0.120 −1.091  
 (−3.48) (−2.32)  (−3.19) (−1.67)  (−0.88) (−3.95)  
LiqRisk 0.415 −7.473  0.177 1.504  0.035 −0.020  
 (1.56) (−10.54)  (0.25) (0.86)  (2.50) (−1.77)  
#stocks 1,304 1,021  1,943 1,490  906 817  
adj-R2 6.8% 15.6%  6.3% 14.7%  8.1% 15.4%  
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Table 13: Brokerage coverage terminations, illiquidity, and ICC 
 
This table reports results of a difference-in-differences (DiD) test around coverage terminations by 
brokerage firms.  The sample construction is described in the text.  Control stocks are chosen by selecting 
five stocks at random in the same size and book-to-market quintiles as the treated stock in the quarter 
preceding the event subject to the condition that the control firms were themselves not subject to coverage 
termination in the one year around the event.  For each treated stock we calculate the statistic of interest in 
the first month before and after the event.  We repeat this calculation for each control stock and take the 
average across control stocks.  The table reports the cross-sectional averages of these statistics before and 
after the event for both treated and control firms as well as the double difference (reported under the 
column ‘Coeff’).  We calculate the standard error (SE) of the DiD difference with a block bootstrap of 
block length 100 and 10,000 repetitions.  The number of observations is reported in the column ‘N.’  We 
report these statistics for the entire sample as well as the sample broken up based on the number of 
analysts for the treated firm in the month preceding the event. 
 
 Treated  Control  DiD 
# Analysts Before After  Before After  Coeff SE N 
 Panel A: Ln(ILLIQ) 
All −6.06 −6.03  −5.41 −5.44  0.06 0.01 2,563 
≤ 5 −2.72 −2.65  −2.15 −2.15  0.07 0.02 413 
(5 10] −5.04 −5.02  −4.48 −4.50  0.04 0.01 578 
(10 15] −6.36 −6.31  −5.77 −5.80  0.07 0.02 479 
(15 20] −7.14 −7.13  −6.66 −6.70  0.05 0.01 434 
> 20 −8.31 −8.28  −7.34 −7.39  0.07 0.01 644 
 Panel B: ICC 
All 11.82 12.04  11.26 11.58  −0.10 0.15 1,996 
≤ 5 13.65 14.07  13.71 13.71  0.41 0.25 210 
(5 10] 12.58 12.84  12.24 12.71  −0.21 0.25 443 
(10 15] 12.89 13.33  11.51 11.98  −0.03 0.37 405 
(15 20] 10.87 10.88  10.78 11.02  −0.23 0.18 369 
> 20 10.39 10.51  9.71 9.99  −0.17 0.15 569 
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Table 14: Characteristics of portfolios sorted by size and illiquidity 
 

We form portfolios as in Table 3.  This table then reports formation-period statistics on the resulting 4×4 
SIZE and ILLIQ portfolios.  SIZE is the market capitalization in billions of dollars, Ln(ILLIQ) is Amihud 
illiquidity, B/M is the book-to-market ratio, DVOL is the average dollar trading volume over the last 12-
months in billions of dollars, GP/AT is the ratio of gross profit to total assets, Turn is the average turnover 
over last 12 months, AG is the asset growth, TotVol is the total volatility calculated using daily returns 
over the last 12 months.  We also calculate the formation-month return (Return(𝑡)), the 11-month return 
skipping the most recent month (Return(𝑡 − 11: 𝑡 − 1)), the 24-month skipping the recent 12 months 
(Return(𝑡 − 35: 𝑡 − 12)), and the 36-month including the formation period month (Return(𝑡 − 35: 𝑡)).  
All returns are in percent.  For the differences in portfolio characteristics, ***, **, and * denote significance 
at the 1%, 5%, and 10% levels, respectively.  The standard errors for these differences are corrected using 
the Newey and West (1987) approach with 36 lags.  The sample includes NYSE and AMEX stocks with 
prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ at the time of 
portfolio formation.  The sample period is October 1977 to November 2018. 
 
 ILLIQ  ILLIQ 
SIZE Low Q2 Q3 High High − Low  Low Q2 Q3 High High − Low 
 Panel A: SIZE(𝑡)  Panel B: Ln(ILLIQ(𝑡)) 
Small 0.26 0.25 0.24 0.23 −0.02***  −3.67 −2.95 −2.44 −1.51 2.16*** 
Q2 0.83 0.82 0.82 0.81 −0.02***  −5.25 −4.65 −4.21 −3.37 1.88*** 
Q3 2.23 2.20 2.17 2.14 −0.09***  −6.39 −5.90 −5.54 −4.79 1.61*** 
Big 19.67 13.89 11.52 10.13 −9.54***  −7.92 −7.51 −7.22 −6.68 1.24*** 
 Panel C: B/M(𝑡)  Panel D: DVOL(𝑡 − 11: 𝑡) 

 Small 0.97 0.85 0.81 0.80 −0.17***  0.09 0.04 0.02 0.01 −0.07*** 
Q2 0.75 0.67 0.63 0.64 −0.12***  0.31 0.15 0.10 0.06 −0.24*** 
Q3 0.69 0.64 0.58 0.52 −0.17***  0.68 0.39 0.28 0.19 −0.49*** 
Big 0.59 0.57 0.55 0.50 −0.09***  2.60 1.71 1.34 0.99 −1.61*** 
 Panel E: GP/AT(𝑡)  Panel F: Turn(𝑡 − 11: 𝑡) 
Small 0.37 0.34 0.34 0.32 −0.05***  0.18 0.10 0.07 0.05 −0.13*** 
Q2 0.35 0.33 0.33 0.32 −0.03***  0.22 0.13 0.09 0.06 −0.16*** 
Q3 0.32 0.29 0.30 0.31 −0.02  0.21 0.13 0.10 0.07 −0.14*** 
Big 0.32 0.30 0.29 0.29 −0.03***  0.15 0.11 0.10 0.08 −0.07*** 
 Panel G: AG(𝑡)  Panel H: TotVol(𝑡 − 11: 𝑡) 
Small 0.20 0.14 0.14 0.13 −0.06***  0.48 0.43 0.42 0.43 −0.05*** 
Q2 0.19 0.15 0.14 0.16 −0.03*  0.42 0.37 0.35 0.37 −0.05*** 
Q3 0.15 0.13 0.13 0.14 −0.01  0.36 0.32 0.32 0.32 −0.04*** 
Big 0.14 0.13 0.13 0.14 0.00  0.30 0.28 0.29 0.30 0.00 
 Panel I: Return(𝑡)  Panel J: Return(𝑡 − 11: 𝑡 − 1) 
Small −2.26 0.36 1.63 3.06 5.31***  −7.34 7.22 15.31 26.26 33.60*** 
Q2 −1.37 0.97 1.92 3.01 4.38***  −1.28 11.94 18.18 27.17 28.45*** 
Q3 −0.65 0.95 1.90 2.62 3.28***  2.97 12.15 17.41 23.45 20.48*** 
Big −0.07 0.87 1.43 2.39 2.45***  6.61 11.17 14.80 21.03 14.42*** 
 Panel K: Return(𝑡 − 35: 𝑡 − 12)  Panel L: Return(𝑡 − 35: 𝑡) 
Small 52.56 30.45 25.43 21.49 −31.07***  35.88 40.06 45.91 53.20 17.32*** 
Q2 48.73 36.38 31.21 27.89 −20.84***  42.40 55.59 59.04 66.39 23.98*** 
Q3 47.10 33.45 31.67 33.52 −13.58***  50.16 53.27 59.25 70.62 20.47*** 
Big 38.32 31.08 30.38 32.88 −5.44  47.48 48.90 54.12 66.66 19.18*** 
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“Illiquidity and the Cost of Equity Capital: 
Evidence from Actual Estimates of Capital Cost for U.S. Data” 
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Figure A1: Fama-MacBeth coefficients for ILLIQ  
 
This figure plots the time-series of FM coefficients on Ln(ILLIQ) where the dependent variable is ICC, for specification (3) in Panel A of Table 4. 
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Table A1: Fama-MacBeth Regressions for realized returns and ICC using ranks 
 
This table reports results of Fama-MacBeth cross-sectional regressions for realized returns (in excess of 
the risk-free rate) and ICC (in excess of the yield on long-term government bonds) on illiquidity and 
various firm characteristics similar to those in specification (3) of Panel B of Table 4, except that we use 
ranks of all independent variables (cross-sectionally assigned each month, and scaled to lie between 0 and 
1).  Variables are defined in Table 1.  Ln(ILLIQ), Ln(SIZE), and Beta are lagged by two months in return 
regressions and by one month in ICC regressions.  Return11 is lagged by two months and Return1 is 
lagged by one month in all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of 
previous year of the current month.  All coefficients are multiplied by 100.  T-statistics in parentheses are 
the standard ones for return regressions and calculated using the Newey and West (1987) correction with 
36 lags for ICC regressions.  The sample includes NYSE and AMEX stocks with prices between $5 and 
$1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is indicated in 
each column. 
 
 Return Return ICC 
 1955-2016 1977-2018 1977-2018 
Constant 0.248 0.177 13.007 
 (0.68) (0.40) (14.67) 
Ln(ILLIQ) 0.604 0.636 −4.294 
 (2.77) (2.32) (−6.61) 
Ln(SIZE) 0.286 0.416 −7.823 
 (1.05) (1.25) (−11.20) 
Ln(B/M) 0.463 0.374 3.777 
 (4.16) (3.04) (5.09) 
Return11 1.059 0.833 −3.023 
 (6.99) (4.37) (−7.45) 
Return1 −1.424 −1.101 −1.416 
 (−13.04) (−7.93) (−9.76) 
Beta 0.039 0.014 3.561 
 (0.25) (0.07) (9.11) 
GP/AT 0.342 0.410 −1.113 
 (3.83) (3.60) (−3.79) 
Ln(1+AG) −0.318 −0.252 −1.257 
 (−5.48) (−3.41) (−4.69) 
#stocks 1,158 1,337 1,035 
adj-R2 7.5% 6.5% 16.3% 
 
  



68 

Table A2: Fama-MacBeth regressions for realized returns and ICC, with additional beta controls 
 
This table reports results of Fama-MacBeth cross-sectional regressions for realized excess returns (in 
excess of the riskfree rate) and future excess ICC (in excess of the yield on long-term government bonds) 
on illiquidity and various firm characteristics similar to those in Table 4 except that we include five Fama 
and French (2015) betas instead of a single market beta on the right hand side.  Variables are defined in 
Table 1.  Ln(ILLIQ), Ln(1/DVOL), DIF, Ln(SIZE), and Betas are lagged by two months in return 
regressions and by one month in ICC regressions.  Return11 is lagged by two months and Return1 is 
lagged by one month in all regressions.  Ln(B/M) is calculated at the end of previous year of the current 
month.  Stocks above the NYSE median market capitalization are defined as Large and the rest of the 
stocks are defined as Small.  All coefficients are multiplied by 100.  T-statistics in parentheses are the 
standard ones for return regressions and calculated using the Newey and West (1987) correction with 36 
lags for ICC regressions.  The sample includes NYSE and AMEX stocks with prices between $5 and 
$1,000 and whose ILLIQ is not in the top 1% or bottom 1% of ILLIQ.  The sample period is indicated in 
each column. 
 
 Return (1966-2016)  Return (1977-2018)  ICC (1977-2018) 
 All Large Small  All Large Small  All Large Small 
Constant 0.341 1.126 −0.482  0.463 1.277 −0.505  11.751 6.981 18.348 
 (1.24) (3.72) (−1.52)  (1.65) (4.08) (−1.50)  (17.91) (10.54) (14.28) 
Ln(ILLIQ) 0.116 −0.019 0.199  0.074 −0.038 0.162  −0.309 −0.901 −0.456 
 (3.26) (−0.49) (4.80)  (2.11) (−0.94) (3.92)  (−2.69) (−8.84) (−3.06) 
Ln(SIZE) 0.096 −0.095 0.287  0.060 −0.116 0.280  −1.003 −0.997 −2.177 
 (1.99) (−1.85) (4.48)  (1.18) (−2.10) (4.02)  (−6.15) (−9.11) (−7.88) 
Ln(B/M) 0.167 0.154 0.160  0.118 0.121 0.119  1.546 1.540 1.451 
 (3.80) (3.08) (3.16)  (2.83) (2.48) (2.29)  (4.42) (3.85) (4.75) 
Return11 0.615 0.555 0.620  0.541 0.495 0.571  −2.343 −1.741 −2.636 
 (4.51) (3.25) (4.57)  (3.91) (2.74) (4.22)  (−6.91) (−4.87) (−6.72) 
Return1 −3.885 −3.812 −3.958  −2.982 −3.023 −2.843  −5.048 −4.173 −4.954 
 (−10.87) (−8.51) (−10.81)  (−8.01) (−6.30) (−7.62)  (−12.90) (−9.64) (−9.66) 
Beta1 0.058 −0.017 0.095  0.068 0.014 0.089  1.915 2.196 1.717 
 (0.56) (−0.14) (1.01)  (0.61) (0.11) (0.90)  (8.25) (7.35) (8.04) 
Beta2 −0.039 −0.038 −0.041  0.000 −0.009 0.010  0.950 1.074 0.892 
 (−0.68) (−0.53) (−0.71)  (−0.01) (−0.13) (0.19)  (7.55) (6.92) (5.47) 
Beta3 0.159 0.175 0.142  0.133 0.118 0.129  −0.049 0.062 −0.126 
 (2.73) (2.44) (2.63)  (2.03) (1.47) (2.16)  (−0.27) (0.31) (−0.79) 
Beta4 0.019 0.045 −0.019  0.012 0.055 −0.037  −0.394 −0.396 −0.372 
 (0.46) (0.86) (−0.49)  (0.26) (0.98) (−0.86)  (−4.77) (−4.73) (−3.70) 
Beta5 0.057 0.065 0.049  0.029 0.016 0.032  0.011 0.065 −0.050 
 (1.36) (1.27) (1.24)  (0.66) (0.30) (0.78)  (0.13) (0.69) (−0.67) 
GP/AT 0.304 0.364 0.315  0.371 0.356 0.425  −1.171 −1.353 −1.419 
 (2.69) (2.62) (2.60)  (3.06) (2.39) (3.21)  (−4.93) (−4.04) (−4.51) 
Ln(1+AG) −0.526 −0.471 −0.591  −0.356 −0.312 −0.366  −0.827 −0.800 −0.846 
 (−5.70) (−4.00) (−5.19)  (−3.96) (−2.74) (−3.15)  (−2.44) (−1.97) (−2.46) 
#stocks 1,340 643 705  1,337 652 685  1,035 606 431 
adj-R2 8.3% 12.3% 6.0%  7.7% 12.2% 5.5%  16.2% 15.9% 12.9% 
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Table A3: Fama-MacBeth regressions for ICC: Subsample results with additional beta controls 
 
This table reports results of Fama-MacBeth cross-sectional regressions for ICC on illiquidity and various 
firm characteristics as in Table A1, except that we report results for two subsamples of 1977 to 1997 and 
1998 to 2018. 
 
 ICC (1977-1997)  ICC (1998-2018) 
 All Large Small  All Large Small 
Constant 12.061 7.265 16.388  11.438 6.694 20.300 
 (10.52) (6.85) (9.13)  (18.99) (8.70) (13.72) 
Ln(ILLIQ) −0.502 −0.732 −0.386  −0.114 −1.072 −0.527 
 (−2.98) (−7.02) (−1.65)  (−0.97) (−7.28) (−2.92) 
Ln(SIZE) −1.290 −0.905 −1.925  −0.714 −1.090 −2.428 
 (−5.17) (−5.45) (−4.61)  (−5.01) (−8.46) (−7.32) 
Ln(B/M) 2.354 2.472 2.159  0.731 0.601 0.746 
 (4.64) (4.30) (4.89)  (3.88) (2.82) (4.18) 
Return11 −2.993 −2.403 −3.597  −1.688 −1.075 −1.679 
 (−5.69) (−4.56) (−6.71)  (−8.17) (−3.46) (−8.33) 
Return1 −5.881 −5.132 −6.375  −4.208 −3.207 −3.539 
 (−10.28) (−9.29) (−11.14)  (−17.54) (−8.22) (−10.17) 
Beta1 2.261 2.674 1.876  1.565 1.715 1.558 
 (5.73) (5.49) (4.93)  (13.05) (9.62) (9.84) 
Beta2 1.055 1.410 0.814  0.845 0.736 0.970 
 (5.00) (7.55) (2.82)  (6.91) (4.41) (6.57) 
Beta3 −0.468 −0.343 −0.567  0.374 0.471 0.313 
 (−2.51) (−1.43) (−4.61)  (1.97) (2.12) (1.85) 
Beta4 −0.281 −0.439 −0.166  −0.507 −0.352 −0.577 
 (−2.21) (−2.92) (−1.28)  (−6.00) (−5.06) (−5.30) 
Beta5 0.018 0.094 −0.078  0.004 0.036 −0.021 
 (0.17) (0.76) (−0.89)  (0.03) (0.27) (−0.19) 
GP/AT −0.761 −0.468 −1.254  −1.585 −2.246 −1.583 
 (−2.14) (−1.33) (−2.52)  (−6.87) (−7.20) (−4.07) 
Ln(1+AG) −0.963 −1.153 −0.708  −0.690 −0.443 −0.984 
 (−1.51) (−1.54) (−1.18)  (−3.20) (−1.94) (−2.99) 
#stocks 1,032 603 433  1,038 609 428 
adj-R2 16.7% 15.7% 12.9%  15.7% 16.1% 12.9% 
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Table A4: Fama-MacBeth regressions with alternative measures of ICC 
 
This table reports results of Fama-MacBeth cross-sectional regressions for ICC (in excess of the yield on 
long-term government bonds) on illiquidity and various firm characteristics as in specification (3) of 
Panel B of Table 4, except that we use different measures of ICC.  The first column uses an ICC based on 
Easton (2004), the second column uses an ICC based on Ohlson and Juettener-Nauroth (2005), and the 
third column uses an ICC based on the Li and Mohanram (2014) approach of computing earnings 
forecasts from regressions, instead of analysts’ projections.  Independent variables are defined in Table 1.  
Ln(ILLIQ), Ln(SIZE), and Beta are lagged by one month, Return11 is lagged by two months and Return1 
is lagged by one month in all regressions.  Ln(B/M), GP/AT, and Ln(1+AG) are calculated at the end of 
previous year of the current month.  All coefficients are multiplied by 100.  T-statistics in parentheses are 
calculated using the Newey and West (1987) correction with 36 lags.  The sample includes NYSE and 
AMEX stocks with prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or bottom 1% of 
ILLIQ. The sample period is 1977 to 2018. 
 

 Easton (2004) Ohlson and  
Juettener-Nauroth (2005) 

Li and 
Mohanram (2014) 

Constant 3.731 7.713 7.582 
 (1.67) (4.67) (12.17) 
Ln(ILLIQ) −1.588 −1.043 −0.107 
 (−12.93) (−15.12) (−0.92) 
Ln(SIZE) −1.223 −1.448 −0.436 
 (−3.40) (−7.15) (−2.55) 
Ln(B/M) 0.868 1.021 3.744 
 (3.68) (4.75) (9.93) 
Return11 −1.666 −1.685 −2.280 
 (−4.73) (−5.65) (−9.12) 
Return1 −1.277 −0.983 −4.517 
 (−2.47) (−2.49) (−14.54) 
Beta 3.021 2.942 −0.259 
 (9.64) (10.85) (−2.32) 
GP/AT −0.232 −0.902 −0.466 
 (−0.75) (−2.92) (−3.01) 
Ln(1+AG) 0.691 0.408 −1.244 
 (2.20) (1.49) (−8.57) 
#stocks 1,341 1,341 1,148 
adj-R2 14.3% 15.7% 53.6% 
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Table A5: Cross-sectional correlations among returns, ICC, illiquidity, and firm characteristics 
 
This table provides time-series average of cross-sectional correlations among return, ICC, illiquidity, and various other firm characteristics. 
Variables are defined in Table 1.  The upper part of the matrix (in italics) contains rank correlations.  The lower part of the matrix contains 
correlations in levels.  The sample includes NYSE and AMEX stocks with prices between $5 and $1,000 and whose ILLIQ is not in the top 1% or 
bottom 1% of ILLIQ.  The sample period is 1993 to 2018. 
 
  ILLIQ SIZE Ln(ILLIQ) Ln(SIZE) Ln(B/M) Return11 Beta GP/AT Ln(1+AG) Return ICC APBeta PSBeta GPIN 
ILLIQ  −0.947 1.000 −0.947 0.331 −0.012 0.006 0.024 −0.066 0.008 0.210 0.262 −0.005 −0.122 
SIZE −0.133  −0.947 1.000 −0.343 0.107 −0.042 −0.059 0.060 0.042 −0.254 −0.266 0.009 0.115 
Ln(ILLIQ) 0.593 −0.551  −0.947 0.331 −0.012 0.006 0.024 −0.066 0.008 0.210 0.262 −0.005 −0.122 
Ln(SIZE) −0.483 0.659 −0.936  −0.343 0.107 −0.042 −0.059 0.060 0.042 −0.254 −0.266 0.009 0.115 
Ln(B/M) 0.173 −0.182 0.299 −0.305  −0.127 −0.016 −0.329 −0.155 0.014 0.188 0.054 0.016 −0.042 
Return11 0.057 0.013 0.056 0.036 −0.116  −0.017 −0.001 −0.052 −0.001 −0.146 −0.018 0.020 0.022 
Beta −0.105 −0.065 −0.016 −0.038 −0.015 0.020  0.057 0.000 0.002 0.221 0.109 −0.010 0.030 
GP/AT −0.004 −0.014 0.008 −0.044 −0.271 0.006 0.019  −0.009 0.005 −0.047 0.030 −0.016 −0.014 
Ln(1+AG) −0.049 0.010 −0.056 0.039 −0.083 −0.059 0.015 −0.014  −0.008 −0.054 0.046 −0.010 0.003 
Return 0.036 0.005 0.042 0.014 0.027 0.000 0.013 0.001 −0.013  −0.044 0.002 0.005 0.038 
ICC 0.137 −0.127 0.229 −0.260 0.180 −0.097 0.187 −0.078 −0.026 −0.033  0.052 0.021 −0.004 
APBeta −0.394 −0.538 0.138 −0.269 0.056 −0.040 0.110 0.024 0.039 −0.004 0.050  −0.006 −0.038 
PSBeta 0.004 0.005 −0.022 0.028 0.018 0.008 −0.059 −0.040 −0.007 0.003 0.016 −0.012  0.003 
GPIN −0.005 −0.007 −0.032 0.025 −0.010 0.010 0.008 −0.001 0.002 0.017 −0.006 0.013 −0.003  
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Table A6: Brokerage coverage terminations and market capitalization 
 
This table reports results of a difference-in-differences (DiD) test around coverage terminations by 
brokerage firms, for market capitalization (Ln(SIZE)).  Sample construction is described in the text.  
Control stocks are chosen by selecting five stocks at random in the same size and book-to-market quintile 
as the treated stock in the quarter preceding the event subject to the condition that the control firms were 
themselves not subject to coverage termination in the one year around the event.  For each treated stock 
we calculate the statistic of interest in the first month before and after the event.  We repeat this 
calculation for each control stock and take the average across control stocks.  The table reports the cross-
sectional averages of these statistics before and after the event for both treated and control firms as well as 
the double difference (reported under the column ‘Coeff’).  We calculate the standard error (SE) of the 
DiD difference with a block bootstrap of block length 100 and 10,000 repetitions.  The number of 
observations is reported in the column ‘N.’  We report these statistics for the entire sample as well as the 
sample broken up based on the number of analysts for the treated firm in the month preceding the event. 
 
 Treated  Control  DiD 
# Analysts Before After  Before After  Coeff SE N 
 Ln(SIZE) 
All 7.64 7.58  7.37 7.33  −0.020 0.014 2,557 
≤ 5 5.33 5.26  5.03 5.00  −0.047 0.011 417 
(5 10] 6.72 6.65  6.57 6.52  −0.019 0.016 574 
(10 15] 7.69 7.62  7.61 7.56  −0.017 0.026 473 
(15 20] 8.44 8.39  8.31 8.28  −0.018 0.023 434 
> 20 9.51 9.45  8.91 8.85  −0.007 0.021 640 
  


